Graphing Calculator Tips

for TI-83

The calculator you use must have four built-in capabilities:


Graph a function

 

     (1) Press <Y=> to enter function.

     (2) Press <ZOOM> to Zoom

              (a)  Press <6> for Zoom Standard (10x10)   or

              (b)  Press  <7> for Zoom Trig

 

     (3) Press  <GRAPH> for graph.

     (4) Press <TRACE> for Trace, then use arrow keys to trace curve.

 

     (5) Press <WINDOW> for Window to set up your own domain and range.

 


 

Solve an Equation

 

     (1) Press <MATH>

     (2) Then press <0> or scroll down to 0 for the solver editor.

 

     (3) After the Eqn: 0 =   You should enter your equation (Notice that it is set = to 0).

 

     (3) Press <ENTER> to get the Interactive Solver Editor

     (4) Make a guess for x =

 

     (5) You may change the bounds (the default bounds are {-1E99, 1E99}).

     (6) Press <ALPHA> <ENTER> to solve equation.   

 

     (7) Repeat with different bounds to solve for other roots. 

           Use this in connection with the Graph capability to see where other roots may be.

 

 

 

 


 

Calculate a Numerical Derivative

     (1) Press <MATH> then <8> or scroll down to 8 and  Press <ENTER>.

     (2) After nDeriv(  is displayed,

             enter your function,

             then a comma,

             then the variable x,

             then a comma,

             then the value at which  you wish to take the derivative,

             then a right parenthesis.

     (3) Then Press <ENTER> to get the numerical value of the derivative.   

 


 

Calculate a Definite Integral

     (1) Press <MATH> then <9> or scroll down to 9 and Press <ENTER>.

     (2) After fnInt(  is displayed,

             enter your function,

             then a comma,

             then the variable x,

             then a comma,

             then the lower bounds of the integral,

             then a comma,

             then the upper bounds of the integral,

             then a right parenthesis.

     (3) Then Press <ENTER> to get the numerical value of the integral.