Password Entropy

Password entropy is a measurement of how unpredictable a password is.
The formula for entropy is:
$\mathrm{E}=\log _{2}\left(R^{L}\right)$
where $E=$ password entropy, $R=$ pool of unique characters, and $L=$ number of characters in your password.
Then $R^{L}=$ the number of possible passwords and
$\log _{2}\left(R^{L}\right)=$ the number of bits of entropy.

E stands for "entropy," which is the opposite of an ordered pattern. Entropy is good: the bigger the E , the harder a password is to crack.

We calculate password entropy by first looking at the pool of characters a password is made from.
For example, the password password would have a possible pool of 26 characters from the English alphabet.
Changing the password to Password would increase your pool to 52 characters. I made a table below to outline the rest.

Type Pool of Characters Possible
Lowercase
26
Lower \& Upper Case
52
Alphanumeric 36
Alphanumeric \& Upper Case 62
Common ASCII Characters 30
Diceware Words List 7,776
English Dictionary Words 171,000

Password strength is determined with this chart:
< 28 bits = Very Weak; might keep out family members
28-35 bits = Weak; should keep out most people, often good for desktop login passwords
36-59 bits = Reasonable; fairly secure passwords for network and company passwords
60-127 bits = Strong; can be good for guarding financial information 128+ bits = Very Strong; often overkill

While a password with 40-50 bits of entropy may be semi-safe now, it is only a matter of time until GPUs become more powerful, and password cracking takes less time!

Here is an example:

If your keyboard has 95 unique characters and you are randomly constructing a password from that whole set, then $\mathrm{R}=95$.
If you have a 12-character password, then $\mathrm{L}=12$.
The number R to the L power is $540,360,087,662,636,962,890,625--$ which is how many passwords you have.
That's the same as $2^{78.9}$-- and the $\log _{2}$ of that is 78.9. In info-security lingo, it's 78.9 bits of entropy. That approaches the "exponential wall," where a password could take ages to crack.

Now calculate password entropy for the following passwords:
\qquad 1. password
$R=26$ since its pool of characters is just the 26 lower case letters and $L=8$ (the length)
\qquad 2. Password
\qquad 3. qwerty
\qquad 4. abc123
\qquad 5. MrP*MathPage
$R=82$ since it uses upper and lower case and ASCII characters
\qquad 6. 123456
\qquad 7. starwars
\qquad 8. Baseball
\qquad 9. P33e=7a*E6m
\qquad 10. Q77a\&-2kB4R2
\qquad 11. If the password entropy of an eight character password is 34.9 bits, what is the pool of characters?
12. If the password entropy of a twelve character password is 55.7 bits, what is the pool of characters?

