List of "Fun" Formulas

by David Pleacher

1. Formula to determine your speed in miles per hour for a particular race that you ran:
(A) $M P H=\frac{45 y}{22 t}$ where $\mathrm{y}=$ distance run in yards and t is time in seconds
(B) $M P H=\frac{15 f}{22 t}$ where $\mathrm{f}=$ distance run in feet and t is time in seconds
(C) $M P H=\frac{3600 m}{1609 t}$ where $\mathrm{m}=$ distance run in meters and t is time in seconds
2. Formulas for Baseball:
(A) Pitcher's Earned Run Average:
$E R A=\frac{(E R)(9)}{I P}$ where ER = Earned Runs, IP is the number of innings pitched, and 9 is the number of innings in a regular game (6 or 7 could be substituted for 9 for Little League, Softball, or High School Baseball).
(B) Batter's Slugging Average:

$$
\begin{aligned}
& S L A=\frac{S+2 \bullet D+3 \bullet T+4 \bullet H R}{A B} \text { where } \mathrm{S}=\text { Singles, } \mathrm{D}=\text { Doubles, } \mathrm{T}=\text { Triples, } \\
& \mathrm{HR}=\text { Home Runs, and } \mathrm{AB}=\text { At Bats. }
\end{aligned}
$$

(C) Batter's On Base Average:
$O B A=\frac{H+B B+H B P}{A B+B B+H B P+S F}$ where $\mathrm{H}=$ Hits, $\mathrm{BB}=$ Walks, $\mathrm{HBP}=$ Hit By Pitch, and $\mathrm{SF}=$ Sacrifice Flies
3. Volleyball Formula

$$
\begin{aligned}
& H P=\frac{K-E}{T A} \quad \text { where HP = Hitting Percentage or Attack Percentage, } \\
& \mathrm{K}=\text { Kills, } \mathrm{E}=\text { Attack Errors, and TA = Total Attack Attempts }
\end{aligned}
$$

4. Body Mass Index:
(A) $B M I=\frac{703 \mathrm{~W}}{H^{2}}$ where $\mathrm{W}=$ weight in pounds and $\mathrm{H}=$ height in inches
(B) $B M I=\frac{W}{H^{2}}$ where $\mathrm{W}=$ weight in kilograms and $\mathrm{H}=$ height in meters
5. Total Area of your skin:
$A=\frac{3}{5} h^{2}$ where $h=$ your height given in feet
6. Formula to Estimate a person's aerobic capacity based on a one mile walk:

$$
V 0_{2} \max =132.853-(0.0769 W T)-(0.3877 A G E)+(6.3150 S E X)-(3.2649 T)-(0.1565 H R)
$$

where $V \mathrm{O}_{2}$ max = person's aerobic capacity measured in ($\mathrm{mL} / \mathrm{kg} / \mathrm{min}$) and $W T=$ body weight in pounds, $A G E=$ age in years, SEX: $1=$ male, $0=$ female, $\mathrm{T}=$ time to walk one mile in minutes and hundredths of minutes, and $H R=$ average heart rate for the last two minutes of the one mile walk.

The physicians who developed the formula say it will help doctors design safe and effective exercise programs (Journal of the American Medical Association, 13 May 1988).
7. Formula to determine the distance that lightning is from you:
$D=1130 \bullet t$ where $t=$ the number of seconds from the time you see lightning flash until you hear the thunder and D is measured in feet
8. Formula to find distance, given the rate and time:
$D=R \bullet T$ where $T=$ time and $\mathrm{R}=$ Rate
9. Formula to determine the weight of a cube of ice in pounds:

$$
W=.033 e^{3} \quad \text { where } e=\text { the edge of the cube measured in inches measured in inches }
$$

10. Formula to find how long a storm will last:

$$
\begin{gathered}
t=\sqrt{\frac{d^{3}}{216}} \text { where } d=\text { the diameter of the storm in miles } \\
\\
\text { and } t=\text { time in hours }
\end{gathered}
$$

11. Formula to find the Heat Index

$$
\begin{aligned}
\mathrm{HI}= & 16.923+\left(1.85212 \times 10^{-1} \cdot T\right)+\left(9.41695 \times 10^{-3} \cdot T^{2}\right)-\left(3.8646 x 10^{-5} \cdot T^{3}\right) \\
& +(5.37941 \cdot R)-\left(1.00254 \times 10^{-1} \cdot T \cdot R\right)+\left(3.45372 \times 10^{-4} \cdot T^{2} \cdot R\right)+\left(1.42721 x 10^{-6} \cdot T^{3} \cdot R\right) \\
& +\left(7.28898 \times 10^{-3} \cdot R^{2}\right)-\left(8.14971 \times 10^{-4} \cdot T \cdot R^{2}\right) \\
& +\left(1.02102 \times 10^{-5} \cdot T^{2} \cdot R^{2}\right)-\left(2.18429 x 10^{-8} \cdot T^{3} \cdot R^{2}\right) \\
& +\left(2.91583 \times 10^{-5} \cdot R^{3}\right)-\left(1.97483 x 10^{-7} \cdot T \cdot R^{3}\right) \\
& +\left(8.43296 x 10^{-10} \cdot T^{2} \cdot R^{3}\right)-\left(4.81975 \times 10^{-11} \cdot T^{3} \cdot R^{3}\right)
\end{aligned}
$$

given the temperature, T, in Fahrenheit degrees and the Relative Humidity, R.
12. Formula to determine the Wind Chill:

$$
W C=35.74+0.6215 T-35.75 V^{.16}+0.4275 T V^{.16}
$$

where WC = Wind Chill based on the Fahrenheit scale,
T is the air temperature (measured in ${ }^{\circ} \mathrm{F}$), and
V is the wind speed measured in mph
13. Formula to convert between Celsius and Fahrenheit degrees:
(A) Celsius to Fahrenheit: $F=\frac{9}{5} C+32$ where $\mathrm{C}=$ Celsius and $\mathrm{F}=$ Fahrenheit
(B) Fahrenheit to Celsius: $C=\frac{5}{9}(F-32)$ where $\mathrm{C}=$ Celsius and $\mathrm{F}=$ Fahrenheit
14. Formula for the camera's f-stop:

$$
\begin{aligned}
& N=\frac{f}{D} \text { where } \mathrm{N}=\text { the } \mathrm{f} \text {-stop number, } \mathrm{f}=\text { the focal length of the lens, } \\
& \text { and } \mathrm{D}=\text { the diameter of the aperture }
\end{aligned}
$$

15. Formula to determine the right size TV:

$$
\begin{array}{cl}
T V=\frac{D}{2.5} & \text { where } T V=\text { ideal screen size and } D=\text { distance in inches } \\
& \text { from your couch to your TV stand }
\end{array}
$$

16. Formula to determine the amount of a tip:

$$
\begin{gathered}
T=C \bullet R \quad \text { where } \mathrm{T}=\text { amount of the tip, } \mathrm{C}=\text { cost of the meals, } \\
\text { and } \mathrm{R}=\text { the tip rate (in decimal form) }
\end{gathered}
$$

17. Formula for the number of gallons in an aquarium:

$$
\begin{aligned}
G=\frac{L \bullet W \bullet H}{231} & \text { where } G=\text { number of gallons in the aquarium, and } \\
& L, W, \text { and } H \text { are the dimensions of the aquarium in inches } \\
& (231 \text { is the number of cubic inches in a gallon) }
\end{aligned}
$$

18. Formula for Simple Interest:
$I=P \bullet R \bullet T$ where $\mathrm{I}=$ amount of interest, $\mathrm{P}=$ the principal, $R=$ the rate (as a decimal), and $T=$ time (in years)
19. Formulas for Compound Interest:
(A) Compound Interest Formula: $A=P\left(1+\frac{r}{n}\right)^{n t}$

$$
\text { where } \begin{aligned}
A & =\text { Total Amount (current worth) } \\
P & =\text { initial deposit or Principal } \\
r & =\text { annual interest rate (expressed as a decimal: eg. } 0.06 \text {) } \\
& n=\# \text { of times per year interest is compounded } \\
& t=\text { number of years invested }
\end{aligned}
$$

(B) Compound Interest Formula for continuous compounding:

$$
A=P e^{r t} \quad \text { where } e=2.718281828
$$

20. Formula for the Rule of 72 :

$$
\begin{gathered}
T=\frac{72}{R} \text { where } \mathrm{T}=\text { the time (in years) required to double an } \\
\text { investment at } \mathrm{R} \text { percent compounded annually }
\end{gathered}
$$

21. Formula to determine the speed of a car:

$$
\begin{aligned}
& s=\sqrt{30 f d} \text { where } s=\text { speed in m.p.h. that a car was traveling, } \\
& d \text { is the distance in feet that the car skidded, } \\
& \text { and } f \text { is the coefficient of friction of the road } \\
& \text { (dry concrete road } f=.8 \text {; wet concrete } f=.4 \text {) }
\end{aligned}
$$

22. Formula for Horsepower:

$$
\begin{aligned}
H=15-\frac{(n-2000)^{2}}{150,000} & \text { where } H \text { is the horsepower generated } \\
& \text { by an automobile engine at } n \text { r.p.m.s }
\end{aligned}
$$

23. Formula for the Displacement of an engine:
$D=\frac{\pi}{4} B^{2} S N$ where D is the displacement of an engine, $B=$ the bore, $S=$ the stroke, and $N=$ the number of cylinders.
This can be simplified to $D=.7854 B^{2} S N$
D is measured in cubic inches or cubic centimeters (or liters)
24. Formula for total Stopping Distance of a car:
(A) Reaction Distance: $R D=1.1 R$ where $\mathrm{R}=$ Rate of car in mph
(B) Braking Distance: $B D=.0515 R^{2}$ where $\mathrm{R}=$ Rate of car in mph
(C) Total Stopping Distance: $D=1.1 R+.0515 R^{2}$ where $\mathrm{R}=$ Rate
25. Formula to generate Pythagorean Triples:

All Pythagorean triples are of the form $\{a, b, c\}$

$$
\text { where } a=M^{2}-N^{2}, \quad b=2 M N \text {, and } c=M^{2}+N^{2}
$$

for integers M and N and $M>N$.
For example, if $M=2$ and $N=1$,
Then $\{a, b, c\}=\{3,4,5\}$
26. Formula to calculate password entropy:

$$
\mathrm{E}=\log _{2}\left(R^{L}\right)
$$

where E =password entropy, $R=$ pool of unique characters, and $L=$ number of characters in your password.
Then $R^{L}=$ the number of possible passwords and
$\log _{2}\left(R^{L}\right)=$ the number of bits of entropy.

