Algebra II Pacing Guide

First Nine Weeks

SOL	Topic	Blocks	
1.4	Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural.	1	
17.1	Recognize that the square root of -1 is represented by i .		
17.2	Define and identify a complex number.		
17.4	Simplify powers of i.		
1.1	Identify examples of field properties: commutative, associative, identity, inverse, and distributive.	1	
1.2	Identify examples of axioms of equality: reflexive, symmetric, transitive, substitution, addition, and multiplication.		
1.3	Identify examples of axioms of inequality and order trichotomy, transitive, addition and multiplication.		
9.1	Identify the domain and range of a function presented algebraically and graphically.	1	
9.2	Distinguish between relations and functions that are expressed algebraically and graphically.		
9.7	Find the value of a function for a given element from the domain.		
	Algebra of Functions: +, -, *, /, Composition.	1	
9.3	Recognize restricted/ discontinuous domains and ranges.		
9.6	Find the composition of two functions.		
9.1	Identify the inverse of a function presented algebraically or graphically.	1	
9.4	Use interchange of variables to find the inverse of a function.		
9.1	Identify the zeros of a function presented algebraically.		
10.1	Identify the x-intercept of a linear graph.		
10.2	Identify the zero of a linear $f(x)$ given its graph.		
Review	Solve multistep equations in one variable.	1	
4.1	Solve absolute value equations in one variable algebraically \& graphically.		
4.3	Express solutions to absolute value equations in one variable graphically.		
Review	Solve compound inequalities.	1	
4.2	Solve absolute value inequalities in one variable algebraically and graphically.		
4.3	Express solutions to absolute value inequalities in one variable graphically and as an algebraic inequality.		
19.1	Collect and analyze data.	1	
19.2	I nvestigate scatterplots.		
19.3	Find an equation for the curve of best fit for data using a graphing calculator. Models will include linear, quadratic, exponential and logarithmic functions.		
19.4	Make predictions using data, scatterplots or curve of best fit.		

Algebra II Pacing Guide

Second Nine Weeks

Algebra II Pacing Guide
 Third Nine Weeks

SOL	Topic	Block	
	Polynomial long division	1	
	Synthetic division	1	
15.1	Investigate the shape and behavior of linear, quadratic and cubic functions. Behaviors will include intercepts, number of turning points and end behavior.	1	
	Descartes Rule of signs, Depressing the equation, rational root theorem.	2	
10.1	Identify the x-intercepts of a graph.		
10.2	Identify the zeros of a function, given a graph.	1	
10.3	Determine the linear factors of a polynomial expression when the zeros of the corresponding polynomial function are displayed on a graph.		
15.3	Using the general shape of a function, identify the odd or even family of graphs to which a particular graph belongs. Characteristics of a graph may include the intercepts, number and location of turning points and end behavior.	1	
8.1	Recognize the graphs of parent functions for linear, quadratic, absolute value, step and exponential functions.		
8.4	Given an equation, graph a linear, quadratic, absolute value, step or exponential function with the aid of a calculator.		
8.2	Given an equation of a function, identify the function as linear, quadratic, absolute value, step or exponential.	1	
8.3	Write the equation of a linear, quadratic, absolute value, step or exponential function, given the graph of a parent function or an integral translation.		
15.2	Investigate the shape and behavior of exponential and logarithmic functions, including intercepts and end behavior.		
9.8	Investigate exponential and logarithmetic functions, using the graphing calculators.	1	
9.5	Given the graph, recognize that exponential and logarithmic functions are inverses of each other.	1	
19.1	Collect and analyze data.		
19.2	Investigate scatterplots (nonlinear) to determine if patterns exist and then identify patterns.		
19.3	Find an equation for the curve of best fit for data, using a graphing calculator. Models will include quadratic, exponential and logarithmic functions.	1	
19.4	Make predictions using data, scatterplots or curve of best fit.		
19.5	Given a set of data, determine the model that would best describe the data.		

20.1	Translate " y is directly proportional to x " as $\mathrm{y}=\mathrm{kx}$.	1	
20.2	Translate " y is inversely proportional to $x^{\prime \prime}$ as $y=k / x$.		
20.3	Translate " y varies x " as $\mathrm{y}=\mathrm{kxz}$.		
20.4	Determine the value of the constant of proportionality, k, given initial conditions for $x \& y$.		
20.5	Set up and solve practical problems, using combinations of direct and inverse variation.		
16.2	Recognize patterns in a sequence.	1	
16.4	Use and interpret the notations: n, nth term, Σ and a-sub-n.		
16.3	Distinguish between arithmetic and geometric sequences.		
16.5	Write the first n-terms in an arithmetic or geometric sequence.	1	
16.6	Given the formula, find a-sub-n for an arithmetic or geometric sequence.		
16.1	Distinguish between a sequence and a series.		
16.7	Given the formulas, find the sum, S-sub-n of the first n terms of an arithmetic or geometric series include infinite series.	1	
16.4	Use and interpret the sigma notation.		

Algebra II Pacing Guide

Fourth Nine Weeks

SOL	Topic	Block	
7.2	Solve equations containing a radical expressions algebraically and graphically. The equation will contain a linear expression under the radical and all terms outside the radical will be constants.	1	
7.3	Identify from a graph the solutions to an equation containing radical expressions.		
7.4	Solve an equation containing radical expressions using a graphic calculator.	1	
7.5	Check possible solutions to an equation containing radical expressions using graphing calculator.		
2.2	Simplify a rational expression with common monomial or binomial factors.	1	
2.1	Add, subtract, multiply and divide rational expressions whose denominators are monomials or polynomial expressions in completely factored form.	2	
2.3	Recognize a complex fraction and simplify it as a quotient or product of simple fractions.		
7.3	Identify, from a graph, the solutions to an equation containing rational expressions.		
7.5	Check possible solutions to an equation containing rational expressions using graphing calculator.	1	
7.1	Solve equations containing rational expressions with monomial denominators algebraically and graphically.		
7.4	Solve an equation containing rational expressions using a graphing calculator.	1	
14.1	Identify nonlinear systems of equations as linear-quadratic or quadratic-quadratic.		
14.2	Visualize a nonlinear system of two equations, and predict the number of solutions, using the graphing calculator.	1	
14.3	Solve a linear-quadratic system of equations algebraically and graphically.		
14.4	Solve a quadratic-quadratic system of two equations algebraically and graphically.	1	
18.2	Identify types of conic sections from a graph.		
18.1	Identify types of conic sections, given (h,k) form of an equation.	1	
18.3	Sketch the graph of a conic section in (h,k) form, using knowledge of transformations.	1	
	Given the graph of a conic section, write the equation.		

