Turvy #13Challenging Precalculus Problems
Solution Key by David Pleacher

Here is the title right-side-up:

P	Į	1	ЧU	JS	S T	A	С	C I	ΗI	ΞI	D	1	M A	A 1	N
20)	8	<u> </u>	0 12	2 19	20	1	. 13	3 1	5	3		3 20	<u> </u>	7
E	A	Т	I	N	G		S	P	A	G	Н	E	Т	Т	I
15	20	19	17	7	16	-	12	18	20	16	13	15	19	19	17

Here is the title upside-down:

А		G	I	R	L		W	I	Т	Η		Ρ	I	G	Т	А	I	L	S
20		16	17	11	4		10	17	19	13		18	17	16	19	20	17	4	<u>12</u> ′
S	K	I	Ρ	Ρ	I	N	G		R	0	Ρ	E							
12	_2	17	18	18	17	7	16		11	5	18	15							

Problems:

<u>C</u> 1. Determine the smallest value of x satisfying the equation $|x|^2 + |x| - 6 = 0$.

If
$$x > 0$$
, $x^2 + x - 6 = 0 \implies (x - 2) (x + 3) = 0 \implies x = 2$ (x cannot be -3 since x>0)
If $x < 0$, $x^2 - x - 6 = 0 \implies (x + 2) (x - 3) = 0 \implies x = -2$
Hence, $x = -2$ is the smallest value ox that works.

- <u>K</u> 2. If $f(x) = x^3 + 3x^2 + 4x + 5$ and g(x) = 5Then g(f(x)) = g(anything) = 5
- <u>D</u> 3. Determine the real number k for which the solution set of |kx+2| < 6 is the open

interval
$$(-1, 2)$$

- 6 < kx + 2 < 6
- 8 < kx < 4
So, k = -4.

L 4. If
$$\log_8 M + \log_8 \left(\frac{1}{6}\right) = \frac{2}{3}$$
, Then $M = \log_8 \left(\frac{M}{6}\right) = \frac{2}{3}$
 $8^{\left(\frac{2}{3}\right)} = \frac{M}{6}$
 $4 = \frac{M}{6}$
 $M = 24$

<u>0</u> 5. If $f(x)=2x^3 + Ax^2 + Bx - 5$ and if f(2)=3 and f(-2)=-37What is the value of A + B? f(2) = 16 + 4A + 2B - 5 = 3 f(-2) = -16 + 4A - 2B - 5 = -37Add these together to get: 8A - 10 = -34So A = -3. Then substitute back to get B = 2. Therefore, A + B = -1. <u>Q</u> 6. A ball is dropped from a height of 1 meter. It always bounces to one-half its previous height. The ball will bounce infinitely but it will travel to a finite distance. What is the distance?

Distance = $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \dots$ Distance = $1 + 2(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots)$ Distance = 1 + 2(1) = 3

N 7. In Quadrilateral ABCD,

 $\overline{AB} \perp \overline{BC}, \ \overline{AD} \mid\mid \overline{BC}, \ m(\overline{BC}) = a, \ m(\overline{AC}) = s, \ m(\overline{AD}) = b,$ Determine $m(\overline{CD}) =$

By the Law of Cosines, $(CD)^2 = s^2 + b^2 - 2bs \cos(\angle A)$ $\angle BCA \cong \angle CAD$ because of alternate interior angles $\cos(\angle BCA) = \frac{a}{s}$ $(CD)^2 = s^2 + b^2 - 2bs\left(\frac{a}{s}\right)$

$$CD = \sqrt{s^2 + b^2 - 2ab}$$

<u>M</u> 8. Determine the smallest positive solution θ of the equation $2\cos^2\theta + 3\sin\theta = 0$. $2\cos^2\theta + 3\sin\theta = 0$

$$2(1-\sin^2\theta)+3\sin\theta=0$$

$$2-2\sin^2\theta+3\sin\theta=0$$

$$2\sin^2\theta-3\sin\theta-2=0$$

$$(2\sin\theta+1)(\sin\theta-2)=0$$

$$\sin\theta=\frac{-1}{2} \text{ or } \sin\theta=2$$

$$\theta=210^\circ$$

<u>U</u> 9. Determine the <u>exact</u> value of $\sin\left(\cos^{-1}\left(-\frac{4}{5}\right) - Tan^{-1}\left(-\frac{12}{5}\right)\right)$.

Let
$$\theta = \cos^{-1}\left(-\frac{4}{5}\right)$$

Let $\psi = 7an^{-1}\left(-\frac{12}{5}\right)$
 $sin\left(\cos^{-1}\left(-\frac{4}{5}\right) - 7an^{-1}\left(-\frac{12}{5}\right)\right) = sin(\theta - \psi)$
 $sin(\theta - \psi) = sin\theta \cos\psi - sin\psi \cos\theta$
 $= \left(\frac{+3}{5}\right)\left(\frac{+5}{13}\right) - \left(\frac{-12}{13}\right)\left(\frac{-4}{5}\right)$
 $= \frac{15}{65} - \frac{48}{65} = \frac{-33}{65}$

<u>W</u> 10. The sum of the first 83 nonnegative powers of *i* is _____.

Hint:
$$i^{0} + i^{1} + i^{2} + i^{3} + \dots + i^{82} =$$

 $i^{0} + i^{1} + i^{2} + i^{3} + \dots + i^{82} =$
 $= (1 + i - 1 - i) + (1 + i - 1 - i) + \dots + (1 + i - 1)$
 $= (0) + (0) + \dots + (i) = i$

<u>R</u> 11. If $8^x = 4$ and $5^{x+y} = 125$, Determine y.

$$8^{x} = 4$$

$$(2^{3})^{x} = 4$$

$$2^{3x} = 2^{2}$$

$$3x = 2$$

$$x = \frac{2}{3}$$

$$5^{x+y} = 125$$

$$5^{x+y} = 5^{3}$$

$$x + y = 3$$

$$\frac{2}{3} + y = 3$$

$$y = 2\frac{1}{3}$$

<u>S</u> 12. Determine the sum of the solutions of the equation $|x^2 - 16| = 9x + 6$.

 $x^{2} - 16 = 9x + 6$ when $x^{2} - 16 > 0$ $x^{2} - 9x - 22 = 0$ (x + 2) (x - 11) = 0 x = -2, 11 But - 2 cannot be a solution $-x^{2} + 16 = 9x + 6$ when $x^{2} - 16 < 0$ $x^{2} + 9x - 10 = 0x$ (x + 10 (x - 1) = 0 x = -10, 1 But - 10 cannot be a solution. Therefore, the sum of the solutions is 11 + 1 = 12.

<u>H</u> 13. Determine the coefficient of x^4 in the expansion $(x-2)^7 =$ Using the binomial expansion, the term with x^4 in it is given by ${}_7C_4 x^4 (-2)^3 = 35x^4 (-8) = -280x^4$

X 14. Write
$$\cos(3\theta)$$
 in terms of $\sin\theta$ and $\cos\theta$.
 $\cos(3\theta) = \cos(2\theta + \theta)$
 $= \cos 2\theta \cos\theta - \sin 2\theta \sin\theta$
 $= (\cos^2\theta - \sin^2\theta)\cos\theta - (2\sin\theta\cos\theta)\sin\theta$
 $= \cos^3\theta - \sin^2\theta\cos\theta - 2\sin^2\theta\cos\theta$
 $= \cos^3\theta - 3\sin^2\theta\cos\theta$

<u>E</u> 15. In a litter of 4 kittens, what is the probability that all are female? $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$

G 16.
$$(i^{17} + i^{10})^3 =$$

Use the template: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 $(i^{17} + i^{10})^3 = (i^{17})^3 + 3(i^{17})^2i^{10} + 3i^{17}(i^{10})^2 + (i^{10})^3$
 $= i^{51} + 3i^{44} + 3i^{37} + i^{30}$
 $= -i + 3(1) + 3i + (-1)$
 $= 2i + 2$

1 17. If
$$f(x) = \frac{x-1}{x}$$
 and $g(x) = 1-x$, Then $f(g(x)) = f(g(x)) = \frac{(1-x)-1}{1-x} = \frac{-x}{1-x}$

<u>P</u> 18. In the maze in the figure, Harry is to pick a path from C to either room A or room B. Choosing randomly at each intersection, what is the probability that Harry will enter room B?

There are five paths, three leading to A and two leading to B. At each juncture, you have a 1/3 chance or a ½ chance of going on a certain path. For the top path leading to A, the probability is $1/3 \times \frac{1}{2} = 1/6$. For the next path which leads to B, the probability is $1/3 \times \frac{1}{2} = 1/6$. For the middle path which also leads to B, the probability is $1/3 \times \frac{1}{2} = 1/6$. For the next path which leads to A, the probability is $1/3 \times \frac{1}{2} = 1/6$. For the next path which leads to A, the probability is $1/3 \times \frac{1}{2} = 1/6$. For the bottom path leading to A, the probability is $1/3 \times \frac{1}{2} = 1/6$.

Therefore, the probability that Harry will enter room B is 1/6 + 1/6 = 1/3.

<u>T</u> 19. A bouncing ball loses ¼ of its previous height each time it rebounds. If the ball is thrown up to a height of 60 feet, how many feet will it travel before coming to rest?

The key here is the word LOSES. If it loses ¼, it must gain ¾ of its previous height.

It is an infinite series and can be computed with the formula $\frac{a_1}{1-r}$.

The total distance = 2 (60 + 45 + 135/4 + ...) =
$$2\left(\frac{60}{1-\frac{3}{4}}\right) = 2(60 \bullet 4) = 480$$

<u>A</u> 20. If $\sin 2x \sin 3x = \cos 2x \cos 3x$, determine the smallest positive value of x that satisfies the equation.

sin2x sin3x = cos2x cos3xcos2x cos3x - sin2x sin3x = 0cos(5x) = 0 $5x = 90^{\circ} + 180^{\circ}k$ x = 18 + 36kSo x = 18°