

Here is the title right-side-up:

| A | | M | U | S | T | A | C | H | E | D | | M | A | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{20}$ | | $\overline{8}$ | $\overline{9}$ | $\overline{12}$ | $\overline{19}$ | $\overline{20}$ | $\overline{1}$ | $\overline{13}$ | $\overline{15}$ | $\overline{3}$ | | $\overline{8}$ | $\overline{20}$ | $\overline{7}$ |

Here is the title upside-down:

A	G	I	R	L		W	I	T	H	P	I	G	T	A	I	L	S	
$\overline{20}$	$\overline{16}$	$\overline{17}$	$\overline{11}$	$\overline{4}$		$\overline{10}$	$\overline{17}$	$\overline{19}$	$\overline{13}$		$\overline{18}$	$\overline{17}$	$\overline{16}$	$\overline{19}$	$\overline{20}$	$\overline{17}$	$\overline{4}$	$\overline{12}{ }^{\prime}$
S	K	I	P	P	I	N	G		R	O	P	E						
$\overline{12}$	$\overline{2}$	$\overline{17}$	$\overline{18}$	$\overline{18}$	$\overline{17}$	$\overline{7}$	$\overline{16}$		$\overline{11}$	$\overline{5}$	$\overline{18}$	$\overline{15}$						

Problems:
C 1. Determine the smallest value of x satisfying the equation $|x|^{2}+|x|-6=0$.

$$
\begin{aligned}
& \text { If } x>0, x^{2}+x-6=0 \Rightarrow(x-2)(x+3)=0 \Rightarrow x=2(x \text { cannot be }-3 \text { since } x>0) \\
& \text { If } x<0, x^{2}-x-6=0 \Rightarrow(x+2)(x-3)=0 \Rightarrow x=-2 \\
& \text { Hence, } x=-2 \text { is the smallest value ox that works. }
\end{aligned}
$$

\qquad 2. If $f(x)=x^{3}+3 x^{2}+4 x+5$ and $g(x)=5$

Then $g(f(x))=g($ anything $)=5$

D 3. Determine the real number k for which the solution set of $|k x+2|<6$ is the open interval ($-1,2$).
$-6<k x+2<6$
$-8<k x<4$
So, $k=-4$.
L 4. If $\log _{8} M+\log _{8}\left(\frac{1}{6}\right)=\frac{2}{3}$, Then $M=$ $\log _{8}\left(\frac{M}{6}\right)=\frac{2}{3}$
$8^{\left(\frac{2}{3}\right)}=\frac{M}{6}$
$4=\frac{M}{6}$
$M=24$

O
5. If $f(x)=2 x^{3}+A x^{2}+B x-5$ and if $f(2)=3$ and $f(-2)=-37$

What is the value of $A+B$?
$f(2)=16+4 A+2 B-5=3$ $f(-2)=-16+4 A-2 B-5=-37$

Add these together to get: $8 \mathrm{~A}-10=-34$
So $A=-3$.
Then substitute back to get $\mathrm{B}=2$.
Therefore, $\mathrm{A}+\mathrm{B}=-1$.
\qquad 6. A ball is dropped from a height of 1 meter. It always bounces to one-half its previous height. The ball will bounce infinitely but it will travel to a finite distance.
What is the distance?
Distance $=1+1 / 2+1 / 2+1 / 4+1 / 4+\ldots$
Distance $=1+2(1 / 2+1 / 4+1 / 8+\ldots)$
Distance $=1+2(1)=3$
N
7. In Quadrilateral $A B C D$,
$\overline{A B} \perp \overline{B C}, \quad \overline{A D} \| \overline{B C}, \quad m(\overline{B C})=a, \quad m(\overline{A C})=s, \quad m(\overline{A D})=b$,
Determine $m(\overline{C D})=$

By the Law of Cosines, $(C D)^{2}=s^{2}+b^{2}-2 b s \cos (\angle A)$
$\angle B C A \cong \angle C A D$ because of alternate interior angles
$\cos (\angle \mathrm{BCA})=\frac{a}{s}$
$(C D)^{2}=s^{2}+b^{2}-2 b s\left(\frac{a}{s}\right)$
$C D=\sqrt{s^{2}+b^{2}-2 a b}$

M
8. Determine the smallest positive solution θ of the equation $2 \cos ^{2} \theta+3 \sin \theta=0$.
$2 \cos ^{2} \theta+3 \sin \theta=0$
$2\left(1-\sin ^{2} \theta\right)+3 \sin \theta=0$
$2-2 \sin ^{2} \theta+3 \sin \theta=0$
$2 \sin ^{2} \theta-3 \sin \theta-2=0$
$(2 \sin \theta+1)(\sin \theta-2)=0$
$\sin \theta=\frac{-1}{2}$ or $\sin \theta=2$
$\theta=210^{\circ}$
\underline{U} 9. Determine the exact value of $\sin \left(\operatorname{Cos}^{-1}\left(-\frac{4}{5}\right)-\operatorname{Tan}^{-1}\left(-\frac{12}{5}\right)\right)$.

$$
\begin{aligned}
& \text { Let } \theta=\operatorname{Cos}^{-1}\left(-\frac{4}{5}\right) \\
& \text { Let } \psi=\operatorname{Tan}^{-1}\left(-\frac{12}{5}\right) \\
& \begin{aligned}
& \sin \left(\operatorname{Cos}^{-1}\left(-\frac{4}{5}\right)-\operatorname{Tan}^{-1}\left(-\frac{12}{5}\right)\right)=\sin (\theta-\psi) \\
& \sin (\theta-\psi)=\sin \theta \cos \psi-\sin \psi \cos \theta \\
&=\left(\frac{+3}{5}\right)\left(\frac{+5}{13}\right)-\left(\frac{-12}{13}\right)\left(\frac{-4}{5}\right) \\
& \quad= \frac{15}{65}-\frac{48}{65}=\frac{-33}{65}
\end{aligned}
\end{aligned}
$$

W 10. The sum of the first 83 nonnegative powers of i is \qquad .

$$
\begin{aligned}
& \text { Hint: } i^{0}+i^{1}+i^{2}+i^{3}+\ldots+i^{82}= \\
& i^{0}+i^{1}+i^{2}+i^{3}+\ldots+i^{82}= \\
& =(1+i-1-i)+(1+i-1-i)+\ldots+(1+i-1) \\
& =(0)+(0)+\ldots+(i)=i
\end{aligned}
$$

R 11. If $8^{x}=4$ and $5^{x+y}=125$, Determine y.

$$
\begin{aligned}
& 8^{x}=4 \\
& \left(2^{3}\right)^{x}=4 \\
& 2^{3 x}=2^{2} \\
& 3 x=2 \\
& x=\frac{2}{3} \\
& 5^{x+y}=125 \\
& 5^{x+y}=5^{3} \\
& x+y=3 \\
& \frac{2}{3}+y=3 \\
& y=2 \frac{1}{3}
\end{aligned}
$$

S
12. Determine the sum of the solutions of the equation $\left|x^{2}-16\right|=9 x+6$.
$x^{2}-16=9 x+6$ when $x^{2}-16>0$
$x^{2}-9 x-22=0$
$(x+2)(x-11)=0$
$x=-2,11$ But -2 cannot be a solution
$-x^{2}+16=9 x+6$ when $x^{2}-16<0$
$x^{2}+9 x-10=0 x$
$(x+10(x-1)=0$
$x=-10,1$ But -10 cannot be a solution.
Therefore, the sum of the solutions is $11+1=12$.
\qquad 13. Determine the coefficient of x^{4} in the expansion $(x-2)^{7}=$ Using the binomial expansion, the term with x^{4} in it is given by

$$
{ }_{7} C_{4} x^{4}(-2)^{3}=35 x^{4}(-8)=-280 x^{4}
$$

X 14. Write $\cos (3 \theta)$ in terms of $\sin \theta$ and $\cos \theta$.

$$
\begin{aligned}
\cos (3 \theta) & =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cos \theta-(2 \sin \theta \cos \theta) \sin \theta \\
& =\cos ^{3} \theta-\sin ^{2} \theta \cos \theta-2 \sin ^{2} \theta \cos \theta \\
& =\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta
\end{aligned}
$$

\qquad 15. In a litter of 4 kittens, what is the probability that all are female?
$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2=1 / 16$

G
16. $\left(i^{17}+i^{10}\right)^{3}=$

Use the template: $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

$$
\begin{aligned}
\left(i^{17}+i^{10}\right)^{3} & =\left(i^{17}\right)^{3}+3\left(i^{17}\right)^{2} i^{10}+3 i^{17}\left(i^{10}\right)^{2}+\left(i^{10}\right)^{3} \\
& =i^{51}+3 i^{44}+3 i^{37}+i^{30} \\
& =-i+3(1)+3 i+(-1) \\
& =2 i+2
\end{aligned}
$$

1 17. If $f(x)=\frac{x-1}{x}$ and $g(x)=1-x, \quad$ Then $f(g(x))=$

$$
f(g(x))=\frac{(1-x)-1}{1-x}=\frac{-x}{1-x}
$$

18. In the maze in the figure, Harry is to pick a path from C to either room A or room B. Choosing randomly at each intersection, what is the probability that Harry will enter room B?

There are five paths, three leading to A and two leading to B.
At each juncture, you have a $1 / 3$ chance or a $1 / 2$ chance of going on a certain path.
For the top path leading to A, the probability is $1 / 3 \times 1 / 2=1 / 6$.
For the next path which leads to B, the probability is $1 / 3 \times 1 / 2=1 / 6$.
For the middle path which also leads to B, the probability is $1 / 3 \times 1 / 2=1 / 6$.
For the next path which leads to A, the probability is $1 / 3 \times 1 / 2=1 / 6$.
For the bottom path leading to A, the probability is $1 / 3$.

Therefore, the probability that Harry will enter room B is $1 / 6+1 / 6=1 / 3$.
\qquad 19. A bouncing ball loses $1 / 4$ of its previous height each time it rebounds. If the ball is thrown up to a height of 60 feet, how many feet will it travel before coming to rest?

The key here is the word LOSES. If it loses $1 / 4$, it must gain $3 / 4$ of its previous height.
It is an infinite series and can be computed with the formula $\frac{a_{1}}{1-r}$.
It travels: $60+60+45+45+135 / 4+135 / 4+\ldots$
The total distance $=2(60+45+135 / 4+\ldots)=2\left(\frac{60}{1-\frac{3}{4}}\right)=2(60 \bullet 4)=480$ 20. If $\sin 2 x \sin 3 x=\cos 2 x \cos 3 x$, determine the smallest positive value of x that satisfies the equation.
$\sin 2 x \sin 3 x=\cos 2 x \cos 3 x$
$\cos 2 x \cos 3 x-\sin 2 x \sin 3 x=0$
$\cos (5 x)=0$
$5 x=90^{\circ}+180^{\circ} k$
$x=18+36 k$
So $x=18^{\circ}$

