Methods of Integration

If you cannot simply integrate using the basic formulas above, try one of the following methods:

- Integration by substitution: a method by which some variable is substituted for part of the function $f(x)$ (generally some complicated function within the larger function) in order to make integration simpler.
- Integration by parts: a method of integrating two functions multiplied together (the opposite of the product rule for derivatives), following the formula:

$$
\int u d v=u v-\int v d u
$$

- Integration by Trig Substitution:

If the integral contains trig expressions, try substituting some of the basic trig identities:

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\cot \theta=\frac{1}{\tan \theta} & \sec \theta=\frac{1}{\cos \theta} & \csc \theta=\frac{1}{\sin \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} & \\
\sin ^{2} \theta+\cos ^{2} \theta=1 & \tan ^{2} \theta+1=\sec ^{2} \theta & 1+\cot ^{2} \theta=\csc ^{2} \theta \\
\sin 2 A=2 \sin A \cos A & \cos 2 A=\cos ^{2} A-\sin ^{2} A
\end{array}
$$

If the integral contains the sum or difference of two squares, set up right triangles and make appropriate trig substitutions.

- Numerical Integration: When symbolic methods fail, use of some numerical approximation method will give useful answers along a specified interval. Most calculators enact these methods to give extremely exact answers by using very tiny subdivisions.
- RAM: Rectangular Approximation Method.
$\int \cong \Sigma_{i} y_{i}(\delta x)$ where y_{i} represents the heights of the successive rectangles and $\delta \mathrm{x}$ is the common width of the rectangles (the division).
- TRAPPROX: Trapezoidal approximation.
$\int \cong 1 / 2(\delta x)\left[y_{0}+2\left(y_{1}+\ldots+y_{n-1}\right)+y_{n}\right]$
- Simpson's rule: Fitting parabolic segments beneath a curve.
$\int \cong(b-a)\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots+2 y_{n-2}+4 y_{n-1}+y_{n}\right] / 3 n$
where the interval is between a and b and n is an (even) number of subdivisions.
(With higher number of subdivisions, smaller individual divisions are achieved.)

