Can you fill in the first initial of each student in this math teacher's seating chart using only the clues below?

CLUES:

1. All students are located at integral coordinates in the $x y$-plane. The x-coordinates belong to the set $\{-2,-1,0,1,2\}$, and the y-coordinates belong to the set $\{-1,0,1,2,3\}$.
2. Abel is seated on the line which is normal to the curve $f(x)=x^{2}-2 x+4$ at the point $(1,3)$.
3. Brahmagupta sits on the line normal to the curve $y=x^{5}-x^{4}+1$ at $\mathrm{x}=1$.
4. Cantor is located on the line tangent to the curve $y=-x^{2}+10 x-25$ at the point $(5,0)$.
5. Descartes is seated on the line normal to $y=-x-x^{2}$ at $x=-1$.
6. Euclid sits on the line tangent to $y=x^{3}+x^{2}$ at $(3,36)$.
7. Fermat is located on the line tangent to $y=\sqrt{x^{2}+5}$ at the point $(-2,3)$.
8. The curve $y=a x^{2}+b x+c$ passes through the point $(2,4)$ and is tangent to the line $\mathrm{y}=\mathrm{x}+1$ at $(0,1)$. Determine values for a, b, and c . Gauss sits at the point $(-b-c, 4 a)$.
9. Hardy sits at one of the points on the curve $y=2 x^{3}-3 x^{2}-12 x+20$ where the tangent is parallel to the x -axis.
10. Jacobi is seated on the line tangent to the graph of $y=2 x^{3}-3 x^{2}-12 x+21$ at $\mathrm{x}=2$.
11. Klein is located on the tangent line to $y=3 x^{2}-x$ at $\mathrm{x}=1$.
12. Leibniz sits on the line which is tangent to the curve $y=4 x^{2}-22 x+35$ at the point $(3,5)$.
13. Mandelbrot sits at the point on the curve $y=(x+2)^{2}$ where the normal to that curve is parallel to the y-axis.
14. Newton's seat is collinear with those of Gauss and Cantor.
15. Determine the values of a, b, and c where the curves $y=x^{2}+a x+b$ and $y=c x+x^{2}$ have a common tangent line at $(-1,0)$. Pythagoras sits at the point $(\mathrm{b}, \mathrm{a}+\mathrm{c})$.
16. Riemann sits on the line normal to the curve $y=x^{2}-3 x+2$ at $\mathrm{x}=1$.
17. The line tangent to a curve at a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{y}=2 \mathrm{x}-2$. The normal to that curve at the same point passes through $(11,-5)$. Taylor sits at the point $\left(x_{1}, y_{1}\right)$.
18. Venn's seat is collinear with those of Brahmagupta and Zeno.
19. Wallis is seated on the line tangent to $y=4-3 x-x^{2}$ at the point $(2,-6)$.
20. Zeno is located on the line tangent to $y=\frac{2 x+5}{x^{2}-3}$ at $\mathrm{x}=1$.

CLUE Worksheet

For each problem, write down all possible answers from the given domain and range.

NAME	CLUE	Possible Ordered Pairs for the Seat				
	1	-	\square	\square	\square	\square
Abel	2					
Brahmagupta	3					\square
Cantor	4					
Descartes	5				\square	\square
Euclid	6					\square
Fermat	7			\square	\square	\square
Gauss	8				\square	\square
Hardy	9			\square	-	
Jacobi	10					
Klein	11			\square	\square	\square
Leibniz	12				\square	\square
Mandelbrot	13		\square		\square	\square
Newton	14			\square	\square	\square
Pythagoras	15		\square	\square		\square
Riemann	16					\square
Taylor	17					\square
Venn	18				\square	\square
Wallis	19					\square
Zeno	20				\square	\square

