Turvy for Limits \& Continuity-- A Puzzle by David Pleacher SOLUTION KEY

Here is the title right-side-up:

D	E	V	I	L		R	U	N	O	V	E	R	
$\overline{6}$	$\overline{10}$	$\overline{12}$	$\overline{16}$	$\overline{17}$		$\overline{14}$	$\overline{3}$	$\overline{13}$	$\overline{19}$	$\overline{12}$	$\overline{10}$	$\overline{14}$	

Here is the title upside-down:

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
\text { O } & A & T & M & E & A & L & C & O & O & K & I \\
\hline 19 & 21 & \overline{11} & \overline{7} & \overline{10} & \overline{21} & \overline{17} & & \overline{9} & \overline{19} & \overline{19} & \overline{4} \\
\hline 16 & \overline{10}
\end{array} \\
& \begin{array}{llllllllllllll}
G & R & A & D & U & A & T & I & N & G & F & R & O & M
\end{array} \\
& \overline{15} \overline{14} \overline{21} \overline{6} \overline{3} \overline{21} \overline{11} \overline{16} \overline{13} \overline{15} \quad \overline{5} \overline{14} \overline{19} \overline{7} \\
& \begin{array}{llllllllll}
H & I & G & H & S & C & H & O & O & \text { L }
\end{array} \\
& \overline{18} \quad \overline{16} \quad \overline{15} \quad \overline{18} \quad \overline{20} \quad \overline{9} \overline{18} \quad \overline{19} \overline{19} \overline{17}
\end{aligned}
$$

1. If $c \neq 0$, evaluate $\lim _{x \rightarrow c} \frac{x^{3}-c^{3}}{x^{6}-c^{6}}$

$$
\begin{aligned}
\text { Rewrite } & \lim _{x \rightarrow c} \frac{x^{3}-c^{3}}{x^{6}-c^{6}} \text { as } \\
& \lim _{x \rightarrow c} \frac{x^{3}-c^{3}}{\left(x^{3}-c^{3}\right)\left(x^{3}+c^{3}\right)}=\lim _{x \rightarrow c} \frac{1}{\left(x^{3}+c^{3}\right)}
\end{aligned}
$$

Substituting $x=c$, you obtain $\frac{1}{c^{3}+c^{3}}=\frac{1}{2 c^{3}}$
\qquad 2. $\lim _{x \rightarrow 0}(x-5) \cos (x)=$

Using the product rule,
$\lim _{x \rightarrow 0}(x-5)(\cos x)=$
$\left[\lim _{x \rightarrow 0}(x-5)\right]\left[\lim _{x \rightarrow 0}(\cos x)\right]$
$=(0-5)(\cos 0)=(-5)(1)=-5$.
(Note that $\cos 0=1$.)

- 3. Evaluate $\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x}}{x}$

Substituting $x=0$ into the expression
$\frac{2-\sqrt{4-x}}{x}$ leads to $0 / 0$ which is an indeterminate form. Thus, multiply both the numerator and denominator by the conjugate $(2+\sqrt{4-x})$ and obtain

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2-\sqrt{4-x}}{x}\left(\frac{2+\sqrt{4-x}}{2+\sqrt{4-x}}\right) \\
& =\lim _{x \rightarrow 0} \frac{4-(4-x)}{x(2+\sqrt{4-x})} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(2+\sqrt{4-x})} \\
& =\lim _{x \rightarrow 0} \frac{1}{(2+\sqrt{4-x})} \\
& =\frac{1}{(2+\sqrt{4-(0)})}=\frac{1}{4} .
\end{aligned}
$$

_4. Evaluate $\lim _{x \rightarrow \infty} \frac{5-6 x}{2 x+13}$
Since the degree of the polynomial in the numerator is the same as the degree of the polynomial in the denominator,
$\lim _{x \rightarrow \infty} \frac{5-6 x}{2 x+13}=\frac{-6}{2}=-3$

- 5. Evaluate $\lim _{x \rightarrow \infty} \frac{5 x^{2}-6 x+9}{x^{3}-2 x^{2}}$

Since the degree of the polynomial in the numerator is 2 and the degree of the polynomial in the denominator is 3 ,

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+2 x-3}{x^{3}+2 x^{2}}=0
$$

\qquad 6. Determine the value of k that makes the function $f(x)$ continuous on $[0,11]$,
if $f(x)$ is defined as follows:
$f(x)= \begin{cases}k \bullet \sin \frac{(x+3) \pi}{6}, & x \leq 2 \\ \frac{3-\sqrt{11-x}}{x-2}, & x>2\end{cases}$
In order for f to be continuous, it can't have a break in the graph when $x=2$.
Therefore, you have to get the same output from both pieces of the function if you plug in 2 for x.
Let's start with $\mathrm{x}>2$:
you can't just plug in 2 for x because you get an indeterminate answer (0 divided by 0), so instead, you must calculate the limit of that function as x approaches 2 from the right side using the conjugate method of finding limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{3-\sqrt{11-x}}{x-2} \cdot \frac{3+\sqrt{11-x}}{3+\sqrt{11-x}} \\
& =\lim _{x \rightarrow 2} \frac{9-(11-x)}{(x-2)(3+\sqrt{11-x})} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)}{(x-2)(3+\sqrt{11-x})} \\
& =\lim _{x \rightarrow 2} \frac{1}{(3+\sqrt{11-x})} \\
& =\frac{1}{(3+\sqrt{11-2})}=\frac{1}{6}
\end{aligned}
$$

This tells us that the other function, with 2 plugged in for x must also equal $1 / 6$, so write that as an equation and solve for k :

$$
\begin{aligned}
& k \cdot \sin \frac{(2+3) \pi}{6}=\frac{1}{6} \\
& k \bullet \sin \frac{5 \pi}{6}=\frac{1}{6} \\
& k \cdot \frac{1}{2}=\frac{1}{6} \\
& k=\frac{1}{3}
\end{aligned}
$$

7-8.
Given $f(x)= \begin{cases}\ln x & \text { if } 0<x<1 \\ a x^{2}+b & \text { if } 1 \leq x<\infty\end{cases}$
If $f(2)=3$, determine the values of a and b for which $f(x)$ is continuous on the interval $(0, \infty)$.

If $f(x)$ is to be continuous, $f(1)$ must have the same value from the right side and from the left side.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \ln x=\ln (1)=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} a x^{2}+b=a+b$
So, $a+b=0$, therefore $a=-b$.
Now substitute $f(2)=3$ into the second expression to get $3=4 a+b$.
Solve these equations simultaneously to get $3=3 a$ or $a=1$. Then $b=-1$.
9. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{3}+9}{5 x+8}$

The degree of the monomial in the numerator is 2 and the degree of the binomial in the denominator is 1 . Thus,
$\lim _{x \rightarrow \infty} \frac{3 x^{3}+9}{5 x+8}=\infty$
10. Evaluate $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}-4}}$

Divide every term in both the numerator and denominator by the highest power of x. In this case, it is x. Thus, you have
$\lim _{x \rightarrow-\infty} \frac{\frac{3 x}{x}}{\frac{\sqrt{x^{2}-4}}{x}}$.
As $x \rightarrow-\infty, x=-\sqrt{x^{2}}$. Since the denominator involves a radical, rewrite the expression as

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\frac{3 x}{x}}{\frac{\sqrt{x^{2}-4}}{-\sqrt{x^{2}}}} & =\lim _{x+-\infty} \frac{3}{-\sqrt{1-\frac{4}{x^{2}}}} \\
& =\frac{3}{-\sqrt{1-0}}=-3
\end{aligned}
$$

11.

If $f(x)= \begin{cases}e^{x} & \text { for } 0 \leq x<1 \\ x^{2} e^{x} & \text { for } 1 \leq x<5\end{cases}$
determine $\lim _{x \rightarrow 1} f(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{\substack{+1^{+}}}\left(x^{2} e^{x}\right)=e \text { and } \\
& \lim _{x \rightarrow+1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(e^{x}\right)=e . \text { Thus, } \\
& \lim _{x \rightarrow 1} f(x)=e .
\end{aligned}
$$

12. Evaluate $\lim _{x \rightarrow \infty} \frac{e^{x}}{1-x^{3}}$
$\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow \infty}\left(1-x^{3}\right)=\infty$.
However, as $x \rightarrow \infty$, the rate of increase of e^{x} is much greater than the rate of decrease of $\left(1-x^{3}\right)$. Thus, $\lim _{x \rightarrow \infty} \frac{e^{x}}{1-x^{3}}=-\infty$.
13. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 4 x}$

Divide both numerator and denominator
by x and obtain $\lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{x}}{\frac{\sin 4 x}{x}}$. Now rewrite
the limit as $\lim _{x \rightarrow 0} \frac{3 \frac{\sin 3 x}{3 x}}{4 \frac{\sin 4 x}{4 x}}=\frac{3}{4} \lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x}}{\frac{\sin 4 x}{4 x}}$.
As x approaches 0 , so do $3 x$ and $4 x$.
Thus, you have

$$
\frac{3}{4} \frac{\lim _{3 x \rightarrow 0} \frac{\sin 3 x}{3 x}}{\lim _{x x \rightarrow 0} \frac{\sin 4 x}{4 x}}=\frac{3(1)}{4(1)}=\frac{3}{4} .
$$

14. Given the function: $\quad f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { for } x \neq 3 \\ a & \text { for } x=3\end{cases}$

Determine the value of a which makes the function continuous.

In order to be continuous, the two expressions for $f(x)$ must be equal.

$$
f(3)=a \text { and } \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

Therefore, $a=6$.

15-16. Given the function: $f(x)= \begin{cases}\sin x & \text { if } x \leq-\frac{\pi}{2} \\ a \sin x+b & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ 2 \cos x & \text { if } x \geq \frac{\pi}{2}\end{cases}$
Determine the values of a and b so that the function $f(x)$ is continuous for all values of x.

The points which must be examined are $\mathrm{x}=-\frac{\pi}{2}$ and $\mathrm{x}=\frac{\pi}{2}$.

$$
\begin{aligned}
& \sin \left(-\frac{\pi}{2}\right)=a \sin \left(-\frac{\pi}{2}\right)+b \text { and } a \sin \left(\frac{\pi}{2}\right)+b=2 \cos \left(\frac{\pi}{2}\right) \\
& -1=-a+b \text { and } a+b=0
\end{aligned}
$$

Solving simultaneously, $b=-\frac{1}{2}$ and $a=\frac{1}{2}$
17. Determine the points of discontinuity of the function $f(x)=\frac{1}{x^{3}-3 x^{2}-x+3}$

The points of discontinuity occur when the denominator is equal to zero.
Set $x^{3}-3 x^{2}-x+3=0$
and solve for x by factoring:
$x^{3}-3 x^{2}-x+3=0$
$x^{2}(x-3)-(x-3)=0$
$\left(x^{2}-1\right)(x-3)=0$
$(x-1)(x+1)(x-3)=0$
So, $x=-1,1,3$
18. Given the function: $\quad f(x)= \begin{cases}|3-x| & \text { if } x<7 \\ a x-10 & \text { if } 7 \leq x<10\end{cases}$

Determine the value of a so that the function $f(x)$ is continuous on the interval $(-\infty, 10)$.
In order to be continuous, the limit of $f(x)$ as it approaches 7 from both the right side and the left side must be equal.

$$
\begin{aligned}
& \lim _{x \rightarrow 7^{-}} f(x)=\lim _{x \rightarrow 7^{-}}|3-x|=|-4|=4 \\
& \lim _{x \rightarrow 7^{+}} f(x)=\lim _{x \rightarrow 7^{+}}(a x-10)=7 x-10
\end{aligned}
$$

Setting these two expressions equal:

$$
\begin{aligned}
& 7 x-10=4 \\
& 7 x=14 \\
& x=2
\end{aligned}
$$

19. Evaluate $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

This is the definition of the derivative and is a good problem to give students before they encounter the derivative.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

__ 20. Given the function: $\quad f(x)= \begin{cases}|18-x| & \text { if } x<7 \\ x-10 & \text { if } x \geq 7\end{cases}$
Evaluate $\lim _{x \rightarrow 7} f(x)$
If the limit exists, the limits from the left and right sides must be equal.
$\lim _{x \rightarrow 7^{-}} f(x)=\lim _{x \rightarrow 7^{-}}|18-x|=11$.
$\lim _{x \rightarrow 7^{+}} f(x)=\lim _{x \rightarrow 7^{+}}(x-10)=-4$.
Since the values are different, the limit doe not exist.
21. Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$

$$
\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{(x-3)(x+3)}=\lim _{x \rightarrow 3} \frac{\left(x^{2}+3 x+9\right)}{(x+3)}=\frac{9+9+9}{6}=\frac{9}{2}
$$

