Turvy with Applications of the Integral -- Answer Key by David Pleacher

Here is the title right-side-up: Two candles in a hurricane
Here is the title upside-down: Uncle Sam wearing elf shoes

Integral Application Problems:

1. $\left\{\begin{array}{l}\text { Find the area in square units bounded by the curves } \\ y=x^{3}-2 x^{2} \text { and } y=2 x^{2}-x^{3} .\end{array}\right.$
2. $\left\{\begin{array}{l}\text { Using your calculator, determine the area of a region } \\ \text { bounded by the curves } y=\sin x, y=3 x, \text { and } y=30-3 x .\end{array}\right.$
3. $\left\{\begin{array}{l}\text { Determine the area of the region bounded } \\ \text { by } x=(y-2)^{2} \text { and } y=4-x .\end{array}\right.$
4. $\quad\left\{\begin{array}{l}\text { The figure below is a square of base } 4 \text { meters topped by } \\ \text { a semicircle. What is the average height of this figure? }\end{array}\right.$

Corresponding Answer:
D. $\frac{8}{3}$
F. $\quad 73.228$
G. $\frac{9}{2}$
M. $\frac{\pi}{2}+4$

Integral Application Problems:

5. $\left\{\begin{array}{l}\text { Determine the area bounded by } \\ x=2 y^{2}-5 \text { and } x=y^{2}+4 .\end{array}\right.$
6. $\left\{\begin{array}{l}\text { Determine the area bounded } \\ \text { by } y=x, y=-\frac{x}{2} \text { and } y=5 .\end{array}\right.$
(Determine the area of the region bounded
7. by $y=\sin x, y=\csc ^{2} x, x=\frac{\pi}{4}$ and $x=\frac{3 \pi}{4}$.

Determine the area of the region IN THE FIRST
8. QUADRANT bounded by the curves by $y=\sin x \cos ^{2} x, y=2 x \cos \left(x^{2}\right)$ and $y=4-4 x$.
9. $\left\{\begin{array}{l}\text { Determine the number } a \text { so that } \\ \int_{2}^{5} x^{2} d x \text { is the same as } \int_{2}^{5} a d x .\end{array}\right.$
9.
10. $\left\{\begin{array}{l}\text { A solid is formed by revolving around the } x \text {-axis the } \\ \text { region bounded by the } \mathrm{x} \text {-axis and the curve } y=\sqrt{\sin x} \\ \text { for } 0 \leq x \leq \pi . \quad \text { Determine the volume of the solid. }\end{array}\right.$
(The acceleration function (in meters per second) and initial velocity are given for an object moving along a straight line:
11. $\left\{\begin{array}{l}a(t)=4 t-1, \quad v(0)=-6 .\end{array}\right.$

Determine the total distance traveled by the object in the first 5 seconds.
12. $\left\{\begin{array}{l}\text { Determine the volume of the solid that results when } \\ \text { the region between the curve } y=x \text { and the } \mathrm{x} \text {-axis, } \\ \text { from } x=0 \text { to } x=1, \text { is revolved around the } \mathrm{x} \text {-axis. }\end{array}\right.$
L. 0.379
H. 13

- 13
C. 2π
U. 36

0. $\frac{75}{2}$
I. $2-\sqrt{2}$

-

.
T. $\frac{349}{6}$
w. $\frac{\pi}{3}$
13. $\left\{\begin{array}{l}\text { Determine the volume of the solid that results when } \\ \text { the region bounded by } y=x \text { and } y=x^{2}, \text { from } x=0 \\ \text { to } x=1, \text { is revolved about the x-axis. }\end{array}\right.$
R. $\frac{2 \pi}{15}$
14. $\left\{\begin{array}{l}\text { Determine the volume of the solid that results when } \\ \text { the region bounded by } x=y^{2} \text { and } x=y^{3}, \text { from } y=0 \\ \text { to } y=1, \text { is revolved about the y-axis. }\end{array}\right.$
N. $\frac{2 \pi}{35}$
15. $\left\{\begin{array}{l}\text { Determine the volume of the solid that results when } \\ \text { the region bounded by } y=x^{2} \text { and } y=4 x, \text { is } \\ \text { revolved about the line } y=-2 .\end{array}\right.$

Determine the volume of the solid that results when
16. $\left\{\begin{array}{l}\text { the region bounded by } y=2 \sqrt{x}, x=4 \text { and } y=0, \text { is } \\ \text { revolved around the }\end{array}\right.$ revolved around the y-axis (use cylindrical shells).
S. $\quad \frac{256 \pi}{5}$
17. $\left\{\begin{array}{l}\text { Determine the volume of the solid that results when } \\ \text { the region bounded by } y=x^{3}, x=2 \text { and the x-axis, } \\ \text { is revolved around the line } x=2 .\end{array}\right.$
E. $\frac{16 \pi}{5}$

