Turvy with Applications of the Integral -- Answer Key by David Pleacher

Here is the title right-side-up:Two candles in a hurricaneHere is the title upside-down:Uncle Sam wearing elf shoes

Integral Application Problems: Corresponding Answer: Find the area in square units bounded by the curves $y = x^3 - 2x^2$ and $y = 2x^2 - x^3$. $\frac{8}{3}$ 1. D. Using your calculator, determine the area of a region 2. F. 73.228 bounded by the curves $y = \sin x$, y = 3x, and y = 30 - 3x. Determine the area of the region bounded by $x = (y-2)^2$ and y = 4-x. $\frac{9}{2}$ G. 3. The figure below is a square of base 4 meters topped by M. $\frac{\pi}{2} + 4$ 4. a semicircle. What is the average height of this figure?

Integral Application Problems:

Corresponding Answer:

5.	Example 2 Determine the area bounded by $x = 2y^2 - 5$ and $x = y^2 + 4$.	U.	36
6.	$\begin{cases} \text{Determine the area bounded} \\ \text{by } y = x, \ y = -\frac{x}{2} \text{ and } y = 5. \end{cases}$	0.	$\frac{75}{2}$
7.	$\begin{cases} \text{Determine the area of the region bounded} \\ \text{by } y = \sin x, \ y = \csc^2 x, \ x = \frac{\pi}{4} \text{ and } x = \frac{3\pi}{4}. \end{cases}$	I.	$2 - \sqrt{2}$
8.	$\begin{cases} \text{Determine the area of the region IN THE FIRST} \\ \text{QUADRANT bounded by the curves by} \\ y = \sin x \cos^2 x, \ y = 2x \cos(x^2) \text{ and } y = 4 - 4x. \end{cases}$	L.	0.379
9.	$\begin{cases} \text{Determine the number } a \text{ so that} \\ \int_{2}^{5} x^{2} dx \text{ is the same as } \int_{2}^{5} a dx. \end{cases}$	Н.	13
10.	A solid is formed by revolving around the x-axis the region bounded by the x-axis and the curve $y = \sqrt{\sin x}$ for $0 \le x \le \pi$. Determine the volume of the solid.	C.	2π
11.	The acceleration function (in meters per second) and initial velocity are given for an object moving along a straight line: a(t) = 4t - 1, $v(0) = -6$. Determine the total distance traveled by the object in the first 5 seconds.	T.	$\frac{349}{6}$
12.	Determine the volume of the solid that results when the region between the curve $y = x$ and the x-axis, from $x = 0$ to $x = 1$, is revolved around the x-axis.	W.	$\frac{\pi}{3}$

Integral Application Problems:

Corresponding Answer:

13.	Determine the volume of the solid that results when the region bounded by $y = x$ and $y = x^2$, from $x = 0$ to $x = 1$, is revolved about the x-axis.	R.	$\frac{2\pi}{15}$
14.	Determine the volume of the solid that results when the region bounded by $x = y^2$ and $x = y^3$, from $y = 0$ to $y = 1$, is revolved about the y-axis.	N.	$\frac{2\pi}{35}$
15.	Determine the volume of the solid that results when the region bounded by $y = x^2$ and $y = 4x$, is revolved about the line $y = -2$.	Α.	$\frac{896\pi}{5}$
16.	Determine the volume of the solid that results when the region bounded by $y = 2\sqrt{x}$, $x = 4$ and $y = 0$, is revolved around the y-axis (use cylindrical shells).	S.	$\frac{256\pi}{5}$
17.	Determine the volume of the solid that results when the region bounded by $y = x^3$, $x = 2$ and the x-axis, is revolved around the line $x = 2$.	E.	$\frac{16\pi}{5}$