Turvy with Applications of the Derivative -- Solution
 Answers by David Pleacher
 Correction to \#7 by Samuel Iofel

Here is the title right-side-up: "Italian chef tossing pizza dough."

Here is the title upside-down: "Close-up of a Cabbage Patch Kid."

1. Find the equation of the line normal to the curve $f(x)=x^{3}-3 x^{2}$ at the point $(1,-2)$.
K. $3 y-x=-7$
2. Find the equation of the line tangent to the curve $x^{2} y-x=y^{3}-8$ at the point where $x=0$.
F. $12 \mathrm{y}+\mathrm{x}=24$
3. Determine the point(s) of inflection of $f(x)=x^{3}-5 x^{2}+3 x+6$.
Z. $\left(\frac{5}{3}, \frac{47}{27}\right)$
4. Determine the relative minimum point(s) of $f(x)=x^{4}-4 x^{3}$.
L. $(3,-27)$
5. A particle moves along a line according to the law $\mathrm{s}=2 \mathrm{t}^{3}-9 \mathrm{t}^{2}+12 \mathrm{t}-4$, where $t \geq 0$.

Determine the total distance traveled between $\mathrm{t}=0$ and $\mathrm{t}=4$.
H. 34
6. A particle moves along a line according to the law $s=t^{4}-4 t^{3}$, where $t \geq 0$.

Determine the total distance traveled between $t=0$ and $t=4$.
G. 54
7. If one leg, $A B$, of a right triangle increases at the rate of 2 inches per second, while the other leg $A C$ decreases at 3 inches per second, determine how fast the hypotenuse is changing (in feet per second) when $A B=6$ feet and $A C=8$ feet.
N. $-\frac{1}{10}$
8. The diameter and height of a paper cup in the shape of a cone are both 4 inches, and water is leaking out at the rate of $1 / 2$ cubic inch per second. Determine the rate (in inches per second) at which the water level is dropping when the diameter of the surface is 2 inches.
S. $\frac{1}{2 \pi}$

The key is that the diameter is given to be 4 inches and not the radius.
Given $\frac{d V}{d t}=-\frac{1}{2} \frac{i n^{3}}{\mathrm{sec}} \quad$ and $\quad h=d=4 \mathrm{in}$.
Find $\frac{\mathrm{dh}}{\mathrm{dt}}$ when $d=2$ which means $r=1$ and therefore $h=2$ since $r=\frac{1}{2} h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h$
$V=\frac{\pi}{12} h^{3}$
$\frac{d V}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t}$
$-\frac{1}{2}=\frac{\pi}{4}(2)^{2} \frac{d h}{d t}$
$-\frac{1}{2}=\frac{d h}{d t}$
9. For what value of y is the tangent to the curve $\mathrm{y}^{2}-\mathrm{xy}+9=0$ vertical?
E. ± 3
10. For what value of k is the line $y=3 x+k$ tangent to the curve $y=x^{3}$?
T. ± 2
11. Determine the slopes of the two tangents that can be drawn from the point $(3,5)$ to the parabola $y=x^{2}$.
U. 2 and 10
12. Determine the area of the largest rectangle that can be drawn with one side along the x-axis and two vertices on the curve $y=e^{-x^{2}}$.
P. $\sqrt{\frac{2}{e}}$
13. A tangent drawn to the parabola $y=4-x^{2}$ at the point $(1,3)$ forms a right triangle with the coordinate axes. What is the area of this triangle?
O. $\frac{25}{4}$
14. If the cylinder of largest possible volume is inscribed in a given sphere, determine the ratio of the volume of the sphere to that of the cylinder.
D. $\sqrt{3}: 1$
15. Determine the first quadrant point on the curve $y^{2} x=18$ which is closest to the point $(2,0)$.
B. $(3, \sqrt{6})$
16. Two cars are traveling along perpendicular roads, car At 40 mph , car B at 60 mph . At noon when car A reaches the intersection, car B is 90 miles away, and moving toward it. At 1PM, what is the rate, in miles per hour, at which the distance between the cars is changing?
I. -4
17. A 26 -foot ladder leans against a building so that its foot moves away from the building at the rate of 3 feet per second. When the foot of the ladder is 10 feet from the building, at what rate is the top moving down (in feet per second)?
C. $\frac{5}{4} \quad$ Note: When you solve the equation, you get $\frac{d y}{d t}=\frac{-5}{4} \mathrm{ft} / \mathrm{sec}$
where y represents the distance the top of the ladder moves down the wall. So, the rate at which the top of the ladder is moving down the wall is $5 / 4 \mathrm{ft} / \mathrm{sec}$
18. A rectangle of perimeter 18 inches is rotated about one of its sides to generate a right circular cylinder. What is the area, in square inches, of the rectangle that generates the cylinder of largest volume?
A. 18

