Turvy for Limits \& Continuity-- A Puzzle by David Pleacher

Back in 1953, Roger Price invented a minor art form called the Droodle, which he described as "a borkley-looking sort of drawing that doesn't make any sense until you know the correct title." In 1985, Games Magazine took the Droodle one step further and created the Turvy. Turvies have one explanation right-side-up and an entirely different one turned topsy-turvy. The Turvy above was created by David LaRochelle of Spring Lake Park, Minnesota and published in Games Magazine in May 1986.

Here is the title right-side-up:

$$
\begin{gathered}
\overline{6} \overline{10} \overline{12} \overline{17} \quad \overline{14} \overline{3} \overline{13}
\end{gathered} \begin{gathered}
\overline{19} \\
\hline 12 \\
\hline 10 \\
14
\end{gathered} \overline{8} \overline{2} \quad \overline{21}
$$

Here is the title upside-down:

$$
\begin{aligned}
& \begin{array}{llllllllll}
19 & \overline{21} & \overline{11} & \overline{10} & \overline{21} & \overline{17} & \overline{9} & \overline{19} & \overline{19} & \overline{4} \\
16 & \overline{10}
\end{array} \\
& \overline{15} \overline{14} \overline{21} \overline{6} \overline{21} \overline{11} \overline{16} \quad \overline{13} \quad \overline{15} \quad \overline{5} \overline{14} \quad \overline{19} \overline{7} \\
& \begin{array}{llllllll}
18 & \overline{16} & \overline{15} & \overline{18} & \overline{20} & \overline{9} & \overline{18} & \overline{19} \\
\hline 19 & \overline{17}
\end{array}
\end{aligned}
$$

To determine the titles to this turvy, solve the 21 Limits and Continuity problems in this puzzle. Then replace each numbered blank in the puzzle with the letter corresponding to the answer for that problem.
_1. If $c \neq 0$, evaluate $\lim _{x \rightarrow c} \frac{x^{3}-c^{3}}{x^{6}-c^{6}}$
-2. $\lim _{x \rightarrow 0}(x-5) \cos (x)=$
_ 3. Evaluate $\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x}}{x}$

- 4. Evaluate $\lim _{x \rightarrow \infty} \frac{5-6 x}{2 x+13}$
-5. Evaluate $\lim _{x \rightarrow \infty} \frac{5 x^{2}-6 x+9}{x^{3}-2 x^{2}}$

6. Determine the value of k that makes the function $f(x)$ continuous on $[0,11]$, if $\mathrm{f}(\mathrm{x})$ is defined as follows:
$f(x)= \begin{cases}k \bullet \sin \frac{(x+3) \pi}{6}, & x \leq 2 \\ \frac{3-\sqrt{11-x}}{x-2}, & x>2\end{cases}$

7-8.
Given $f(x)= \begin{cases}\ln x & \text { if } 0<x<1 \\ a x^{2}+b & \text { if } 1 \leq x<\infty\end{cases}$
If $f(2)=3$, determine the values of a and b for which $f(\mathrm{x})$ is continuous on the interval $(0, \infty)$.
\qquad 7. $\mathrm{a}=$
\qquad 8. $b=$
-9. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{3}+9}{5 x+8}$
_ 10. Evaluate $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{x^{2}-4}}$
11.

If $f(x)= \begin{cases}e^{x} & \text { for } 0 \leq x<1 \\ x^{2} e^{x} & \text { for } 1 \leq x<5\end{cases}$ determine $\lim _{x \rightarrow 1} f(x)$
12. Evaluate $\lim _{x \rightarrow \infty} \frac{e^{x}}{1-x^{3}}$
13. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 4 x}$
_ 14. Given the function: $f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { for } x \neq 3 \\ a & \text { for } x=3\end{cases}$
Determine the value of a which makes the function continuous.

15-16. Given the function: $f(x)= \begin{cases}\sin x & \text { if } x \leq-\frac{\pi}{2} \\ a \sin x+b & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ 2 \cos x & \text { if } x \geq \frac{\pi}{2}\end{cases}$
Determine the values of a and b so that the function $f(x)$ is continuous for all values of x.
\qquad 15. $a=$
\qquad 16. $b=$
\qquad 17. Determine the points of discontinuity of the function $f(x)=\frac{1}{x^{3}-3 x^{2}-x+3}$
18. Given the function:

$$
f(x)= \begin{cases}|3-x| & \text { if } x<7 \\ a x-10 & \text { if } 7 \leq x<10\end{cases}
$$

Determine the value of a so that the function $f(x)$ is continuous on the interval $(-\infty, 10)$.

- 19. Evaluate $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

20. Given the function: $\quad f(x)= \begin{cases}|18-x| & \text { if } x<7 \\ x-10 & \text { if } x \geq 7\end{cases}$

Evaluate $\lim _{x \rightarrow 7} f(x)$
_ 21. Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$

Answers:
A. $\frac{9}{2}$
N. $\frac{3}{4}$
B. -1
0. $2 x$
C. ∞
P. $2 h$
D. $\frac{1}{3}$
Q. $2 h x$
E. -3
R. 6
F. 0
S. Limit Does Not Exist
G. $\frac{1}{2}$
T. e
H. 2
I. $-\frac{1}{2}$
U. $\frac{1}{4}$
J. $-3,-1,1$
W. $\frac{1}{2 c^{3}}$
K. -3
X. $\frac{2}{c^{3}}$
L. $-1,1,3$
Y. -5
M. 1
Z. None of the above

