A Turvy for A.P. Calculus Exam

Puzzle and Answer Key by David Pleacher

Caption for the picture:

| " <u>E I F F E</u> | <u>L T</u> | <u>O W E R</u> | <u>A</u> S   | <u>S</u> <u>E</u> <u>N</u>          | <u>B</u> Y  |
|--------------------|------------|----------------|--------------|-------------------------------------|-------------|
| 9 2 3 3 9          | 12 10      | 15 4 9 11      | 1 17         | 17 9 9 18                           | 5 14        |
|                    |            |                |              |                                     |             |
| <u>GUARD</u>       | <u>I</u> N | <u>A RMO</u>   | <u>R E D</u> | <u>T</u> <u>R</u> <u>U</u> <u>C</u> | <u>K</u> ." |
| 7 13 1 11 16       | 2 18       | 1 11 19 15     | 11 9 16      | 10 11 13 21                         | 22          |

Caption for the picture turned upside down:

<u>A</u> 1. What is the x-coordinate of the point of inflection on the graph of  $y = \frac{1}{3}x^3 + 5x^2 + 24$ ?

$$y = \frac{1}{3}x^3 + 5x^2 + 24$$
  

$$y' = x^2 + 10x$$
  

$$y'' = 2x + 10$$
  
Set  $2x + 10 = 0$   

$$\therefore x = -5$$

Check concavity on either side to make sure they are different.



<u>1</u> 2. The graph of a piecewise-linear function *f*, for  $-1 \le x \le 4$ , is shown above.

What is the value of  $\int_{-1}^{4} f(x) dx$ ?

The area under the curve will be the answer where the part of the graph above the x-axis is positive and the part of the graph below the x-axis will be negative:

$$\int_{-1}^{4} f(x) dx = (1 + 2 + 1) + (-.5 + -1) = 2.5$$

F 3. 
$$\int_{1}^{2} \frac{1}{x^2} dx = \int_{1}^{2} x^{-2} dx = -x^{-1} \Big|_{1}^{2} = -\frac{1}{2} - (-1) = .5$$

W 4. 
$$\int_{0}^{x} \sin t \, dt = -\cos t \Big|_{0}^{x} = -\cos x + \cos 0 = 1 - \cos x$$

<u>B</u> 5. If  $x^2 + xy = 10$ , then when x = 2, y = 3Differentiating implicitly,  $2x + x\frac{dy}{dx} + y = 0$   $2 \cdot 2 + 2\frac{dy}{dx} + 3 = 0$   $2\frac{dy}{dx} = -7$   $\frac{dy}{dx} = -3.5$ <u>V</u> 6.  $\int_{1}^{e} \left(\frac{x^2 - 1}{x}\right) dx = \int_{1}^{e} \left(x - \frac{1}{x}\right) dx = \left(\frac{x^2}{2} - \ln x\right)\Big|_{1}^{e} = \frac{1}{2} \left(x - \frac{1}{x}\right) dx$ 

$$\left(\frac{e^2}{2} - \ln e\right) - \left(\frac{1^2}{2} - \ln 1\right) = \frac{e^2}{2} - 1 - \frac{1}{2} = \frac{e^2}{2} - \frac{3}{2}$$

<u>G</u> 7. Let f and g be differentiable functions with the following properties:

(i) 
$$g(x) > 0$$
 for all x  
(ii)  $f(0) = 1$ 

If h(x) = f(x)g(x) and h'(x) = f(x)g'(x), then f(x) = h(x) = f(x)g(x) and h'(x) = f(x)g'(x)Product Rule: h'(x) = f(x)g'(x) + f'(x)g(x) f(x)g'(x) = f(x)g'(x) + f'(x)g(x)  $\therefore f'(x)g(x) = 0$ Since, g(x) > 0, then f'(x) = 0. Hence, f(x) must equal a constant and since f(0) = 1that means f(x) = 1

<u>H</u> 8. What is the instantaneous rate of change at x = 2 of the function f given by

$$f(x) = \frac{x^2 - 2}{x - 1}$$
 ?

$$f'(x) = \frac{(x-1) \cdot 2x - (x^2 - 2) \cdot 1}{(x-1)^2}$$
$$f'(2) = \frac{4-2}{1} = 2$$

<u>E</u> 9. If f is a linear function and 0 < a < b, then  $\int_{a}^{b} f''(x) dx =$ 

Since *f* is linear, *f*'(*x*) is zero.  $\int_{a}^{b} f''(x) dx = (f'(x) + k)|_{a}^{b} = (0 + k)|_{a}^{b} = 0$ 

<u>T</u> 10. If  $f(x) = \begin{cases} \ln x & \text{for } 0 < x \le 2\\ x^2 \ln 2 & \text{for } 2 < x \le 4, \end{cases}$  then  $\lim_{x \to 2} f(x)$  is

 $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \ln x = \ln 2$  $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} x^{2} \ln 2 = 4 \ln 2$ Since  $\lim_{x \to 2^{-}} f(x) \neq \lim_{x \to 2^{+}} f(x)$ 

Therefore, the limit does not exist.



- <u>R</u> 11. The graph of the function *f* shown in the figure above has a vertical tangent at the point (2, 0) and horizontal tangents at the points (1, -1) and (3, 1). For what values of x, -2 < x < 4, is *f* not differentiable?
  - If a function is differentiable, then it must be continuous (converse is not true). So this function is NOT differentiable at x = 0.
  - If a function has a vertical tangent, it is not differentiable, so this function is NOT differentiable at x = 2.

<u>L</u> 12. A particle moves along the x-axis so that its position at time t is given by  $x(t) = t^2 - 6t + 5$ . For what value of t is the velocity of the particle zero?

$$v = x'(t) = 2t - 6$$
  
so  $2t - 6 = 0$  and  $t = 3$ 

U 13. If 
$$f(x) = \sin(e^{-x})$$
, then  
 $f'(x) = \cos(e^{-x}) \cdot \frac{d}{dx}(e^{-x}) = \cos(e^{-x}) \cdot (-e^{-x}) = -e^{-x}\cos(e^{-x})$ 

Y 14. An equation of the line tangent to the graph of  $y = x + \cos x$  at the point (0, 1) is  $y' = 1 - \sin(x)$ At the point (0,1), the slope is m = y' = 1 - 0 = 1So the equation of the tangent is y - 1 = x

<u>O</u> 15. If  $f''(x) = x(x+1)(x-2)^2$ , then the graph of f has inflection points when x =Set equal to zero and check concavity in between the points.

$$z = z^{2}$$

Set  $f''(x) = x(x+1)(x-2)^2 = 0$ 

x = 0, -1, and 2, so these are possible points of inflection.

Substitute values -10, -.5, 1, and 10 for x to check concavity:



Only -1 and 0 are points of concavity because the concavity did not change around x=2

<u>D</u> 16. What are all values of k for which  $\int_{-3}^{k} x^2 dx = 0$ ?

$$\int_{-3}^{k} x^{2} dx = \frac{1}{3} x^{3} \Big|_{-3}^{k} = \frac{k^{3}}{3} + 9 = 0$$
  
$$k^{3} = -27, \quad k = -3$$

<u>S</u> 17. The function f is given by  $f(x) = x^4 + x^2 - 2$ . On what interval is f increasing?  $f(x) = x^4 + x^2 - 2$   $f'(x) = 4x^3 + 2x$  Setting the first derivative equal to zero gives only x = 0.  $f''(x) = 12x^2 + 2$ 

> The second derivative is always positive so the function is always concave up. Substitute points on either side of x = 0 in the first derivative to see whether the function is increasing or decreasing. For x > 0, it is increasing.

<u>N</u> 18. The maximum acceleration attained on the interval  $0 \le t \le 3$  by the particle whose velocity is given by  $v(t) = t^3 - 3t^2 + 12t + 4$  is

Take the derivative of the velocity to get the acceleration:

$$v(t) = t^3 - 3t^2 + 12t + 4$$

$$a(t) = v'(t) = 3t^2 - 6t + 12$$

Take the derivative of the acceleration to get the jerk and find out where possible relative maximums are:

$$j(t) = 6t - 6$$

Set 
$$6t - 6 = 0$$
,  $t = 1$ .

So check the values of the acceleration at t = 0, 1, and 3.

$$t = 0, a = 12$$
  
 $t = 1, a = 9$   
 $t = 3, a = 21$ 

<u>M</u> 19. What is the area of the region between the graphs of  $y = x^2$  and y = -x from x = 0 to x = 2?

$$A = \int_{0}^{2} \left( x^{2} - (-x) \right) dx = \int_{0}^{2} \left( x^{2} + x \right) dx = \left( \frac{x^{3}}{3} + \frac{x^{2}}{2} \right) \Big|_{0}^{2} = \frac{8}{3} + 2 - 0 = \frac{14}{3}$$

<u>J</u> 20. What is the average value of  $y = x^2 \sqrt{x^3 + 1}$  on the interval [0, 2]?

$$\overline{y} = \frac{1}{2-0} \int_{0}^{2} \left( x^{2} \sqrt{x^{3}+1} \right) dx$$
  
Let  $u = x^{3} + 1$   
Then  $du = 3x^{2} dx$   
 $\int \left( x^{2} \sqrt{x^{3}+1} \right) dx = \frac{1}{3} \int \left( 3x^{2} \sqrt{x^{3}+1} \right) dx = \frac{1}{3} \int \left( \sqrt{u} \right) du = \frac{1}{3} \cdot \frac{2}{3} u^{\frac{3}{2}}$   
 $\therefore \overline{y} = \frac{1}{2} \cdot \frac{2}{3} \left( x^{3}+1 \right)^{\frac{3}{2}} \Big|_{0}^{2} = \frac{1}{9} (27-1) = \frac{26}{9}$ 

C 21. If 
$$f(x) = \cot 2x$$
, then  $f'\left(\frac{\pi}{6}\right) =$   
 $f(x) = \cot 2x$   
 $f'(x) = -\csc^2(2x) \cdot \frac{d}{dx}(2x) = -2\csc^2(2x)$   
 $f'\left(\frac{\pi}{6}\right) = -2\csc^2\left(2 \cdot \frac{\pi}{6}\right) = -2\csc^2\left(\frac{\pi}{3}\right) = -2\left(\frac{2}{\sqrt{3}}\right)^2 = \frac{-8}{3}$ 

<u>K</u> 22. Let F(x) be an antiderivative of  $\frac{(\ln x)^3}{x}$ . If F(1) = 0, then F(9) =

Use a calculator to solve:

$$F(x) = \int_{1}^{9} \frac{(\ln x)^{3}}{x} dx = 5.8269$$
  
Since  $F(1) = 0$ , Then  $F(9) = 5.8269$ 

| Answers:          | (units have been omitted) |                   |                                  |  |  |
|-------------------|---------------------------|-------------------|----------------------------------|--|--|
| A5                | J.                        | $\frac{26}{9}$    | S. $(0,\infty)$                  |  |  |
| B3.5              | К.                        | 5.827             | T. Nonexistent                   |  |  |
| C. $\frac{-8}{3}$ | L.                        | 3                 | $U.  -e^{-x}\cos(e^{-x})$        |  |  |
| D3                | Μ                         | $\frac{14}{3}$    | V. $\frac{e^2}{2} - \frac{3}{2}$ |  |  |
| E. 0              | N.                        | 21                | W. $1 - \cos x$                  |  |  |
| F. 0.5            | 0.                        | -1 and 0 only     | X. $1 + \cos x$                  |  |  |
| G. 1              | Ρ.                        | 0, 1, and 3 only  | Y. y = x + 1                     |  |  |
| H. 2              | Q.                        | -1, 0, and 2 only | Z. None of the above             |  |  |
| I. 2.5            | R.                        | 0 and 2 only      |                                  |  |  |