## A Turvy for A.P. Calculus Exam

Puzzle and Answer Key by David Pleacher


Caption for the picture:
${ }^{"} \frac{\mathrm{E}}{9} \frac{\mathrm{I}}{2} \frac{\mathrm{~F}}{3} \frac{\mathrm{~F}}{3} \frac{\mathrm{E}}{9} \frac{\mathrm{~L}}{12} \quad \frac{\mathrm{~T}}{10} \frac{\mathrm{O}}{15} \frac{\mathrm{~W}}{4} \frac{\mathrm{E}}{9} \frac{\mathrm{R}}{11} \quad \frac{\mathrm{~A}}{1} \frac{\mathrm{~S}}{17} \quad \frac{\mathrm{~S}}{17} \frac{\mathrm{E}}{9} \frac{\mathrm{E}}{9} \frac{\mathrm{~N}}{18} \quad \frac{\mathrm{~B}}{5} \frac{\mathrm{Y}}{14}$
$\frac{G}{7} \frac{U}{13} \frac{\mathrm{~A}}{1} \frac{\mathrm{R}}{11} \frac{\mathrm{D}}{16} \quad \frac{\mathrm{I}}{2} \frac{\mathrm{~N}}{18} \quad \frac{\mathrm{~A}}{1} \frac{\mathrm{R}}{11} \frac{\mathrm{M}}{19} \frac{\mathrm{O}}{15} \frac{\mathrm{R}}{11} \frac{\mathrm{E}}{9} \frac{\mathrm{D}}{16} \quad \frac{\mathrm{~T}}{10} \frac{\mathrm{R}}{11} \frac{\mathrm{U}}{13} \frac{\mathrm{C}}{21} \frac{\mathrm{~K}}{22} .{ }^{2}$

## Caption for the picture turned upside down:

$$
\begin{aligned}
& { }^{\prime \prime} \frac{\mathrm{E}}{9} \frac{\mathrm{I}}{2} \frac{\mathrm{~F}}{3} \frac{\mathrm{~F}}{3} \frac{\mathrm{E}}{9} \frac{\mathrm{~L}}{12} \quad \frac{\mathrm{~T}}{10} \frac{\mathrm{O}}{15} \frac{\mathrm{~W}}{4} \quad \frac{\mathrm{E}}{9} \frac{\mathrm{R}}{11} \quad \frac{\mathrm{~A}}{1} \frac{\mathrm{~S}}{17} \quad \frac{\mathrm{~S}}{17} \frac{\mathrm{E}}{9} \frac{\mathrm{E}}{9} \frac{\mathrm{~N}}{18} \quad \frac{\mathrm{~B}}{5} \frac{\mathrm{Y}}{14} \\
& \frac{\mathrm{G}}{7} \frac{\mathrm{U}}{13} \frac{\mathrm{~A}}{1} \frac{\mathrm{R}}{11} \frac{\mathrm{D}}{16} \quad \frac{\mathrm{I}}{2} \frac{\mathrm{~N}}{18} \quad \frac{\mathrm{~A}}{1} \frac{\mathrm{R}}{11} \frac{\mathrm{M}}{19} \frac{\mathrm{O}}{15} \frac{\mathrm{R}}{11} \frac{\mathrm{E}}{9} \frac{\mathrm{D}}{16} \quad \frac{\mathrm{~T}}{10} \frac{\mathrm{R}}{11} \frac{\mathrm{U}}{13} \frac{\mathrm{C}}{21} \frac{\mathrm{~K}}{22} \\
& \frac{\mathrm{~W}}{4} \frac{\mathrm{H}}{8} \frac{\mathrm{I}}{2} \frac{\mathrm{C}}{21} \frac{\mathrm{H}}{8} \quad \frac{\mathrm{H}}{8} \frac{\mathrm{~A}}{1} \frac{\mathrm{~S}}{17} \quad \frac{\mathrm{~J}}{20} \frac{\mathrm{U}}{13} \frac{\mathrm{~S}}{17} \frac{\mathrm{~T}}{10} \quad \frac{\mathrm{~B}}{5} \quad \frac{\mathrm{E}}{9} \quad \frac{\mathrm{E}}{9} \frac{\mathrm{~N}}{18} \\
& \frac{\mathrm{O}}{15} \frac{\mathrm{~V}}{6} \frac{\mathrm{E}}{9} \frac{\mathrm{R}}{11} \frac{\mathrm{~T}}{10} \frac{\mathrm{U}}{13} \frac{\mathrm{R}}{11} \frac{\mathrm{~N}}{18} \frac{\mathrm{E}}{9} \frac{\mathrm{D}}{16} \quad \frac{\mathrm{~B}}{5} \frac{\mathrm{Y}}{14} \quad \frac{\mathrm{~A}}{1} \quad \frac{\mathrm{G}}{7} \frac{\mathrm{~A}}{1} \frac{\mathrm{~N}}{18} \frac{\mathrm{G}}{7} \quad \frac{\mathrm{O}}{15} \frac{\mathrm{~F}}{3} \\
& \frac{\mathrm{~T}}{10} \frac{\mathrm{H}}{8} \frac{\mathrm{I}}{2} \frac{\mathrm{E}}{9} \frac{\mathrm{~V}}{6} \frac{\mathrm{E}}{9} \frac{\mathrm{~S}}{17} .{ }^{.}
\end{aligned}
$$

A 1. What is the $x$-coordinate of the point of inflection on the graph of $y=\frac{1}{3} x^{3}+5 x^{2}+24$ ?

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}+5 x^{2}+24 \\
& y^{\prime}=x^{2}+10 x \\
& y^{\prime \prime}=2 x+10
\end{aligned}
$$

Set $2 x+10=0$
$\therefore x=-5$
Check concavity on either side to make sure they are different.


1 2. The graph of a piecewise-linear function $f$, for $-1 \leq x \leq 4$, is shown above.
What is the value of $\int_{-1}^{4} f(x) d x$ ?
The area under the curve will be the answer where the part of the graph above the $x$-axis is positive and the part of the graph below the $x$-axis will be negative:

$$
\int_{-1}^{4} f(x) d x=(1+2+1)+(-.5+-1)=2.5
$$

F 3. $\int_{1}^{2} \frac{1}{x^{2}} d x=\int_{1}^{2} x^{-2} d x=-\left.x^{-1}\right|_{1} ^{2}=-\frac{1}{2}-(-1)=.5$
$\underline{\mathrm{W}} 4 . \int_{0}^{x} \sin t d t=-\left.\cos t\right|_{0} ^{x}=-\cos x+\cos 0=1-\cos x$

B 5. If $x^{2}+x y=10$, then when
$x=2, y=3$
Differentiating implicitly, $2 x+x \frac{d y}{d x}+y=0$
$2 \bullet 2+2 \frac{d y}{d x}+3=0 \quad 2 \frac{d y}{d x}=-7 \quad \frac{d y}{d x}=-3.5$

ㄴ 6. $\int_{1}^{e}\left(\frac{x^{2}-1}{x}\right) d x=\int_{1}^{e}\left(x-\frac{1}{x}\right) d x=\left.\left(\frac{x^{2}}{2}-\ln x\right)\right|_{1} ^{e}=$
$\left(\frac{e^{2}}{2}-\ln e\right)-\left(\frac{1^{2}}{2}-\ln 1\right)=\frac{e^{2}}{2}-1-\frac{1}{2}=\frac{e^{2}}{2}-\frac{3}{2}$

G 7. Let $f$ and $g$ be differentiable functions with the following properties:
(i) $g(x)>0$ for all x
(ii) $f(0)=1$

If $h(x)=f(x) g(x)$ and $h^{\prime}(x)=f(x) g^{\prime}(x)$, then $f(x)=$
$h(x)=f(x) g(x)$ and $h^{\prime}(x)=f(x) g^{\prime}(x)$
Product Rule: $h^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$f(x) g^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$\therefore f^{\prime}(x) g(x)=0$
Since, $g(x)>0$, then $f^{\prime}(x)=0$.
Hence, $f(x)$ must equal a constant and since $f(0)=1$
that means $f(x)=1$

H 8. What is the instantaneous rate of change at $x=2$ of the function $f$ given by

$$
\begin{gathered}
f(x)=\frac{x^{2}-2}{x-1} ? \\
f^{\prime}(x)=\frac{(x-1) \bullet 2 x-\left(x^{2}-2\right) \bullet 1}{(x-1)^{2}} \\
f^{\prime}(2)=\frac{4-2}{1}=2
\end{gathered}
$$

E 9. If $f$ is a linear function and $0<\mathrm{a}<\mathrm{b}$, then $\int_{a}^{b} f^{\prime \prime}(x) d x=$ Since $f$ is linear, $f^{\prime}(x)$ is zero. $\quad \int_{a}^{b} f^{\prime \prime}(x) d x=\left.\left(f^{\prime}(x)+k\right)\right|_{a} ^{b}=\left.(0+k)\right|_{a} ^{b}=0$

工 10. If $f(x)=\left\{\begin{array}{ll}\ln x & \text { for } 0<x \leq 2 \\ x^{2} \ln 2 & \text { for } 2<x \leq 4,\end{array}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \ln x=\ln 2$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2+} x^{2} \ln 2=4 \ln 2$
Since $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
Therefore, the limit does not exist.


R 11. The graph of the function $f$ shown in the figure above has a vertical tangent at the point $(2,0)$ and horizontal tangents at the points $(1,-1)$ and $(3,1)$. For what values of $x$, $-2<x<4$, is $f$ not differentiable?

If a function is differentiable, then it must be continuous (converse is not true).
So this function is NOT differentiable at $x=0$.
If a function has a vertical tangent, it is not differentiable, so this function is NOT differentiable at $\mathrm{x}=2$.
$\underline{L}$ 12. A particle moves along the $x$-axis so that its position at time $t$ is given by $x(t)=t^{2}-6 t+5$. For what value of $t$ is the velocity of the particle zero?
$v=x^{\prime}(t)=2 t-6$
so $2 t-6=0$ and $t=3$

U 13. If $f(x)=\sin \left(e^{-x}\right)$, then

$$
f^{\prime}(x)=\cos \left(e^{-x}\right) \bullet \frac{d}{d x}\left(e^{-x}\right)=\cos \left(e^{-x}\right) \bullet\left(-e^{-x}\right)=-e^{-x} \cos \left(e^{-x}\right)
$$

$\underline{Y}$ 14. An equation of the line tangent to the graph of $y=x+\cos x$ at the point $(0,1)$ is $y^{\prime}=1-\sin (x)$
At the point $(0,1)$, the slope is $m=y^{\prime}=1-0=1$
So the equation of the tangent is $y-1=x$

O 15. If $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}$, then the graph of $f$ has inflection points when $x=$ Set equal to zero and check concavity in between the points.
Set $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}=0$
$x=0,-1$, and 2 , so these are possible points of inflection.
Substitute values $-10,-.5,1$, and 10 for $x$ to check concavity:


Only -1 and 0 are points of concavity because the concavity did not change around $x=2$

D 16. What are all values of $k$ for which $\int_{-3}^{k} x^{2} d x=0$ ?

$$
\begin{aligned}
& \int_{-3}^{k} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{-3} ^{k}=\frac{k^{3}}{3}+9=0 \\
& k^{3}=-27, \quad k=-3
\end{aligned}
$$

S 17. The function $f$ is given by $f(x)=x^{4}+x^{2}-2$. On what interval is $f$ increasing?
$f(x)=x^{4}+x^{2}-2$
$f^{\prime}(x)=4 x^{3}+2 x \quad$ Setting the first derivative equal to zero gives only $\mathrm{x}=0$.
$f^{\prime \prime}(x)=12 x^{2}+2$
The second derivative is always positive so the function is always concave up.
Substitute points on either side of $x=0$ in the first derivative to see whether the function is increasing or decreasing. For $x>0$, it is increasing.

N 18. The maximum acceleration attained on the interval $0 \leq t \leq 3$ by the particle whose velocity is given by $v(t)=t^{3}-3 t^{2}+12 t+4$ is
Take the derivative of the velocity to get the acceleration:

$$
\begin{aligned}
& v(t)=t^{3}-3 t^{2}+12 t+4 \\
& a(t)=v^{\prime}(t)=3 t^{2}-6 t+12
\end{aligned}
$$

Take the derivative of the acceleration to get the jerk and find out where possible relative maximums are:
$j(t)=6 t-6$
Set $6 t-6=0, \quad t=1$.
So check the values of the acceleration at $t=0,1$, and 3 .

$$
\begin{array}{ll}
t=0, & a=12 \\
t=1, & a=9 \\
t=3, & a=21
\end{array}
$$

M 19. What is the area of the region between the graphs of $y=x^{2}$ and $y=-x$ from

$$
\begin{aligned}
& X=0 \text { to } x=2 \text { ? } \\
& A=\int_{0}^{2}\left(x^{2}-(-x)\right) d x=\int_{0}^{2}\left(x^{2}+x\right) d x=\left.\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{2}=\frac{8}{3}+2-0=\frac{14}{3}
\end{aligned}
$$

」 20. What is the average value of $y=x^{2} \sqrt{x^{3}+1}$ on the interval $[0,2]$ ?

$$
\bar{y}=\frac{1}{2-0} \int_{0}^{2}\left(x^{2} \sqrt{x^{3}+1}\right) d x
$$

Let $u=x^{3}+1$
Then $d u=3 x^{2} d x$
$\int\left(x^{2} \sqrt{x^{3}+1}\right) d x=\frac{1}{3} \int\left(3 x^{2} \sqrt{x^{3}+1}\right) d x=\frac{1}{3} \int(\sqrt{u}) d u=\frac{1}{3} \bullet \frac{2}{3} u^{\frac{3}{2}}$
$\therefore \bar{y}=\left.\frac{1}{2} \bullet \frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}\right|_{0} ^{2}=\frac{1}{9}(27-1)=\frac{26}{9}$

C 21. If $f(x)=\cot 2 x$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$

$$
\begin{aligned}
& f(x)=\cot 2 x \\
& f^{\prime}(x)=-\csc ^{2}(2 x) \cdot \frac{d}{d x}(2 x)=-2 \csc ^{2}(2 x) \\
& f^{\prime}\left(\frac{\pi}{6}\right)=-2 \csc ^{2}\left(2 \bullet \frac{\pi}{6}\right)=-2 \csc ^{2}\left(\frac{\pi}{3}\right)=-2\left(\frac{2}{\sqrt{3}}\right)^{2}=\frac{-8}{3}
\end{aligned}
$$

K 22. Let $F(x)$ be an antiderivative of $\frac{(\ln x)^{3}}{x}$. If $F(1)=0$, then $F(9)=$ Use a calculator to solve:

$$
F(x)=\int_{1}^{9} \frac{(\ln x)^{3}}{x} d x=5.8269
$$

Since $F(1)=0$, Then $F(9)=5.8269$

Answers: (units have been omitted)
A. -5
J. $\frac{26}{9}$
S. $(0, \infty)$
B. -3.5
K. 5.827
C. $\frac{-8}{3}$
L. 3
U. $-e^{-x} \cos \left(e^{-x}\right)$
D. -3
M. $\frac{14}{3}$
V. $\frac{e^{2}}{2}-\frac{3}{2}$
E. 0
N. 21
W. $1-\cos x$
F. 0.5
0. -1 and 0 only
X. $1+\cos x$
G. 1
P. 0,1 , and 3 only
Y. $y=x+1$
H. 2
Q. $-1,0$, and 2 only
Z. None of the above
I. 2.5
R. 0 and 2 only

