Continuity

The functions listed in the following table have different types of behaviors on an interval containing x = 0. For each of the functions, complete the following table:

y = f(x)	Graph of $y = f(x)$	<i>f</i> (0)	$\lim_{x\to 0} f(x)$	Continuous at $x = 0$?
f(x) = x	y x	0	0	Yes, no holes, gaps, or jumps
$f(x) = \frac{x^2}{x}$	x	Undefined	0	No, has a hole at the origin. f(x) is not defined there
$f(x) = \frac{1}{x}$		Undefined	Does Not Exist	No, it is not defined at x = 0
$f(x) = \frac{x}{x}$	y ↓ ×	Undefined	1	No, has a hole at the origin. f(x) is not defined there
f(x) = x	y x	0	0	Yes, no holes, gaps, or jumps. The limit of $f(x)$ as x approaches $0 = f(0)$
$f(x) = \frac{\sin x}{x}$	y x	Undefined	1	No, has a hole at (0, 1)
$f(x) = \frac{ x }{x}$	y 	Undefined	Does Not Exist	No, has a hole at $x = 0$
$f(x) = \sqrt{x}$	y x	0	Does Not Exist	No, the limit only exists from the right side
$f(x) = \frac{1 - \cos x}{x}$	y x	Undefined	0	No, hole at the origin. It is not defined at $x = 0$