Test Sections 6.1-6.2 Precalculus Name \qquad
Do not write on this paper! Do all work on your own paper.
I. Basic Theorems and Proofs

1. Write out all three forms of the Law of Cosines for $\triangle K A T$.
2. Write out the Law of Sines for $\triangle P E G$.
3. Write out the formula for determining the area of a triangle if you are given:
A. the lengths of the three sides j, a, and m of $\triangle J A M$.
B. the lengths of two sides q and e and the measure of $\angle D$ of $\triangle Q E D$.
C. the lengths of the base b and the altitude h of $\triangle B E T$.
4. Develop (Prove) the formula for the area of a triangle if you are given the lengths of two sides of the triangle and the measure of the included angle.
II. Multiple Choice
5. Given $\triangle \mathrm{ABC}$ with $\mathrm{m} \angle \mathrm{B}=34^{\circ}, \mathrm{m} \angle \mathrm{A}=90^{\circ}$, and $\mathrm{c}=14.7 \mathrm{~cm}$. Then $\mathrm{b}=$
A) 17.7 cm
B) 9.92 cm
C) 16.6 cm
D) 8.81
E) 22.14 cm
6. In $\Delta \mathrm{CAM}, \mathrm{m} \angle \mathrm{M}=137^{\circ}, \mathrm{a}=31.6 \mathrm{ft}$, and $\mathrm{c}=42.8 \mathrm{ft}$. Then $\mathrm{m}=$
A) 21.8 ft
B) 65.7 ft
C) 38.8 ft
D) 69.3 ft
E) 72.1 ft
7. In Δ MEG, $\mathrm{m}=28 \mathrm{~cm}, \mathrm{e}=12 \mathrm{~cm}$, and $\mathrm{g}=13 \mathrm{~cm}$. The measure of the smallest angle is
A) 17.51°
B) 18.27°
C) 24.2°
D) 137.5°
E) Not possible (no such triangle)
8. . In \triangle PEG, $p=6 \mathrm{~cm}, \mathrm{e}=7 \mathrm{~cm}$, and $\mathrm{g}=11 \mathrm{~cm}$. Then $\mathrm{m} \angle \mathrm{G}=$
A) 115.3°
B) 98.6°
C) 64.7°
D) 18.27°
E) Not possible (no such triangle)

III. Free Response (SHOW ALL WORK!!)

9. Determine the area of $\triangle \mathrm{MRP}$ if $\mathrm{m}=10 \mathrm{in}, \mathrm{p}=6 \mathrm{in}$, and $\mathrm{m} \angle \mathrm{R}=46^{\circ}$.
10. Determine the area of \triangle PAM if $\mathrm{m}=11 \mathrm{in}, \mathrm{p}=7 \mathrm{in}$, and $\mathrm{a}=9 \mathrm{in}$.
11. In $\triangle \mathrm{MAY}$, you are given the measures of $\angle \mathrm{M}, \angle \mathrm{A}$, and side y . Explain thoroughly how you would determine the measures of the other three parts of the triangle.
12. In $\triangle X Y Z, m \angle X=27^{\circ}, x=4 \mathrm{~cm}$, and $\mathrm{y}=5 \mathrm{~cm}$. Determine the length of side z .
13. In $\triangle A B C, \mathrm{~m} \angle \mathrm{~A}=127^{\circ}, \mathrm{a}=5 \mathrm{~cm}$, and $\mathrm{b}=7 \mathrm{~cm}$. Determine the length of side c .
14. In $\triangle A B C, \mathrm{~m} \angle \mathrm{~B}=64^{\circ}, \mathrm{a}=6 \mathrm{~cm}$, and $\mathrm{m} \angle \mathrm{A}=56^{\circ}$. Solve for the missing three parts of the triangle.
15. The angles of elevation to an airplane from two points A and B on level ground are 52° and 66°, respectively. The points A and B are 5 miles apart, and the airplane is east of both points in the same vertical plane. Determine the altitude of the plane.
