From the above I can try and generalize a formula for the number of squares that can be produced from any square matrix of circles of dimension $n \mathrm{x} n$. The first thing I notice is that the smallest square must have two circles on a side, hence a 2×2, the largest square, an n by n.

Now the number of 2 x 2 s across each row is $\mathrm{n}-1$. The number of rows that can be counted is also $\mathrm{n}-1$. In other words the number of $2 \times 2 \mathrm{~s}=(\mathrm{n}-1)(\mathrm{n}-1)$

The number of 3×3 s across each row is ($n-2$). The number of rows that can be counted is $(n-2)$.
Total number of $3 \times 3 s=(n-2)(n-2)$.
Continue this until you get the final square which whose size is $\mathrm{n} x \mathrm{n}$ and can be found by multiplying ($\mathrm{n}-(\mathrm{n}-$ 1)) $(n-(n-1))=1$

Now I have to add up the number of squares from a $2 \mathrm{x} 2,3 \mathrm{x} 3, \ldots, \mathrm{nxn}$ to get the final answer. So this is looking like a summation problem.

Making a table:

k	Dimension of circle matrix	Sequence to sum	Sum
1	1×1	0	0
2	2×2	1	1
3	3×3	$4+1$	5
4	4×4	$9+4+1$	14
5	5×5	$16+9+4+1$	20
M	mxm	$(\mathrm{m}-1)^{2}$	

The last column from the bottom row is the sum of $(m-1)^{2}$ from $\sum_{1}^{m}(m-1)^{2}$

