

From the above I can try and generalize a formula for the number of squares that can be produced from any square matrix of circles of dimension $n \ge n$. The first thing I notice is that the smallest square must have two circles on a side, hence a 2 x 2, the largest square, an n by n.

Now the number of 2 x 2s across each row is n - 1. The number of rows that can be counted is also n - 1. In other words the number of 2 x 2s = (n - 1)(n - 1)

The number of 3 x 3s across each row is (n - 2). The number of rows that can be counted is (n - 2). Total number of 3 x 3s = (n - 2)(n - 2).

Continue this until you get the final square which whose size is n x n and can be found by multiplying (n - (n-1))(n - (n-1)) = 1

Now I have to add up the number of squares from a 2x2, 3x3, ..., nxn to get the final answer. So this is looking like a summation problem.

Making a table:

k	Dimension of circle matrix	Sequence to sum	Sum
1	1x1	0	0
2	2x2	1	1
3	3x3	4 + 1	5
4	4x4	9 + 4 + 1	14
5	5x5	16 + 9 + 4 + 1	20
Μ	mxm	$(m-1)^2$	

The last column from the bottom row is the sum of $(m-1)^2$ from $\sum_{1}^{m} (m-1)^2$