	Yellow	Blue		White
Gumdrops	9		GW	All Gumdrops $=\mathrm{x}$
Jellybeans				JW
Mints	MY	MB	MW $=?$	All Jellybeans $=\mathrm{y}$
	All Yellow $=\mathrm{a}$	All Blue $=\mathrm{b}$	All white $=\mathrm{c}$	

All Gumdrops + All Jellybeans $-(\mathrm{GW}+\mathrm{JW})=9$
$x+y-($ All white $-M W)=9$
$x+y-c+M W=9$

All Yellow + All Blue $-(\mathrm{MY}+\mathrm{MB})=9$
$a+b-($ All mints $-M W)=9$
$a+b-z+M W=9$

Also given
$\mathrm{a}=2 \mathrm{x}$
$\mathrm{b}=2 \mathrm{y}$
$\mathrm{z}=2 \mathrm{c}$
Using in (2)
$2 x+2 y-2 c+M W=9$
Solving (1) and (3)
$M W=9$
Number of White Mints Left $=9$
Initial number of white mints $=10$

So Number of white mints eaten $=1$

