Triangle Problem:

Let one leg of the right triangle be x . Then the other leg of the triangle will be $20-x$. Therefore the length of the hypotenuse $l=\sqrt{x^{2}+(20-x)^{2}}=\sqrt{2 x^{2}-40 x+400}$. For minimum length of the hypotenuse, we have $\frac{d l}{d x}=\frac{1}{2}\left(2 x^{2}-40 x+400\right)^{-\frac{1}{2}}(4 x-40)=0$. This gives $x=10$.

Further $\frac{d^{2} l}{d x^{2}}=-\frac{1}{4}\left(2 x^{2}-40 x+400\right)^{-\frac{3}{2}}(4 x-40)^{2}+2\left(2 x^{2}-40 x+400\right)^{-\frac{1}{2}}>0$ for $x=10$. Therefore length of minimum hypotenuse $=\sqrt{2 \times 100-400+400}=10 \sqrt{2}$.

From:
Hari Kishan
Meerut (India)

