Oct-22

Problem of the Month

Hot Air Balloon

Idea from Walter Penney

Three towns in a rural flat area of Colorado are each 12 miles from the other two.
Mr. P is in a hot air balloon. At a certain point, he is exactly 7 miles from each of the towns.
Can you determine the height of the balloon? Show your work.

Let the three towns be $A, B \& C$

Let $\mathrm{O}=$ Central Midpoint between all three towns

Let $\mathrm{P}=\mathrm{Mr} . \mathrm{P}$ in hot air ballon directly above O (central midpoint
Let $\mathrm{a}=$ the distance between each town $=12$ miles

Let V be any of the 3 towns (vertex)

Let $\mathrm{PV}=$ the distance from P to any of the any of the towns $=7$ miles

First find the distance from O (central midpoint) to V (any of the 3 towns)
Let $O V=$ the distance from the O (central midpoint) to V (any of the towns).
$\mathrm{OV}=(\mathrm{a} \times \sqrt{ } 3) / 3$

OV = 6.92820323027551 miles

Let $\mathrm{P}=\mathrm{Mr}$. P in hot air ballon

Let V be any of the 3 towns (vertex)

Let $\mathrm{PV}=$ the distance from P to any of the any of the towns $=7$ miles

Let $\mathrm{PO}=$ the distance from P to O , the Height of the Ballon with Mr. $\mathrm{P} . \operatorname{In}$ it.

$P O=V\left(P V^{\wedge} 2-O V^{\wedge} 2\right)$
$\mathrm{PO}=\vee\left(7^{\wedge} 2-6.9282^{\wedge} 2\right)$
$P O=V(49-48)$
$P O=V(1)$
$\mathrm{PO}=1$ mile

The Height of the Balloon with Mr. P. In it is 1 mile

