Holiday Puzzle - Answers

1. Find the value of $2^{2} \times 9+4$.

Multiply x 10.
Add 2^{4}.
Record your result:

40
$40 \times 10=400$

$$
400+16=416
$$

$$
x=25
$$

From this number, subtract the
product of (-2) and (-5).
Multiply that answer by the difference between the square of five and the square root of 441.
Record your result: $\quad 60$
3. 6 times $10^{2}=$ \qquad
Subtract $5(19+29)$.
Add the number whose prime factorization is $5^{2} \times 3$.
Record your result: $\quad 435$
4. Find $3 / 4$ of 32 .

Subtract 2^{3}.
Reverse the digits and add the largest prime factor of 51.
Record your result: $\quad 78$
5. Find the $15^{\text {th }}$ term of $1,4,9,16, \ldots \quad 225$ (these are squares)

From this, subtract 3^{4}.
Now subtract the product of the third and fourth prime numbers.
Record your result: $\underline{109}$

600
$600-240=360$
$360+75=435$
6. $a^{2} b^{2} c^{2}$ suggests someone's theorem. How many letters are in his name?
Multiply that number by the difference between the
square of four and the first
prime number having two digits.
Subtract the cube of 3 .
Record your result: \qquad
7. Find the only two digit number that is both a perfect square and a perfect cube.64

Add to that number the following two numbers:
a. Work out 111111^{2}. The sum of the digits of your answer is \qquad .
b. Add the product of the number of prime numbers between 10 and 50 and the number of sides in a pentagon.
Record your result: \qquad
23

PYTHAGORAS

```
1 0
```

$10 \times(16-11)=50$
$50-27=23$

