Holiday Puzzle – Answers

Find the value of 2² x 9 + 4.
 Multiply x 10.
 Add 2⁴.

Record your result: 416

- 2. Solve: 7x 5(x + 4) = 30
 From this number, subtract the product of (-2) and (-5).
 Multiply that answer by the difference between the square of five and the square root of 441.
 Record your result: 60
- 3. 6 times $10^2 =$ ______ Subtract 5(19 + 29). Add the number whose prime factorization is $5^2 \times 3$. Record your result: 435
- 4. Find ¾ of 32.
 Subtract 2³.
 Reverse the digits and add the largest prime factor of 51.
 Record your result: 78
- 5. Find the 15th term of 1, 4, 9, 16, ... From this, subtract 3⁴.

 Now subtract the product of the third and fourth prime numbers.

 Record your result: 109

- 4040 x 10 = 400400 + 16 = 416
 - x = 25
 - 25 10 = 15
 - $15 \times (25 21) = 60$
 - 600 240 = 360
 - 360 + 75 = 435
 - 24 24 8 = 16
 - 61 + 17 = 78
 - 225 (these are squares) 225 81 = 144
 - $144 (5 \times 7) = 109$

6.	a ² b ² c ² suggests someone's
	theorem. How many letters
	are in his name?
	Multiply that number by the
	difference between the
	square of four and the first
	prime number having two
	digits.
	0.1. 1.00

Subtract the cube of 3. Record your result: 23

- 7. Find the only two digit number that is both a perfect square and a perfect cube.

 Add to that number the following two numbers:
 - a. Work out 111111². The sum of the digits of your answer is ____.
 - b. Add the product of the number of prime numbers between 10 and 50 and the number of sides in a pentagon.

Record your result: <u>155</u>

PYTHAGORAS

10

$$10 \times (16 - 11) = 50$$

$$50 - 27 = 23$$

64

$$1111111^2 = 12345654321$$

sum of the digits = 36

$$11 \times 5 = 55$$

 $64 + 36 + 55 = 155$

HAPPY HOLIDAYS TO ALL

Message: _____