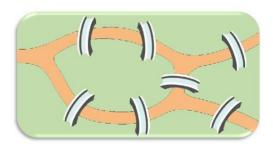

Graph Theory and the Konigsberg Bridge Problem


by David Pleacher

WHO IS THIS FAMOUS MATHEMATICIAN?

1. He is credited with discovering this formula: VERTICES + FACES = __ DGES + 2

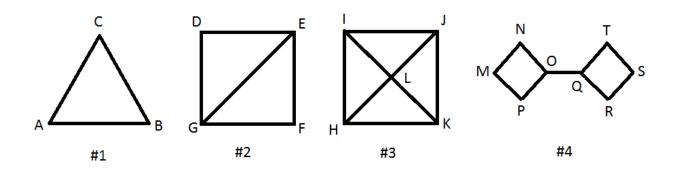
2. P __ zzles like the seven bridges of Konigsberg interested him and were part of a new branch of mathematics that he started called topology.

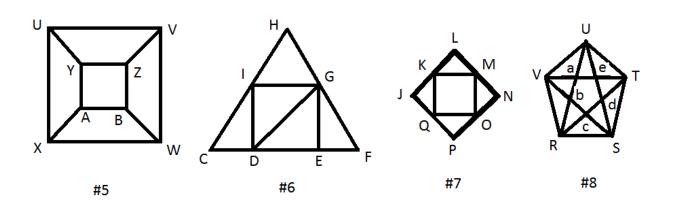
Can you find a path through the city that would cross each bridge once and only once?

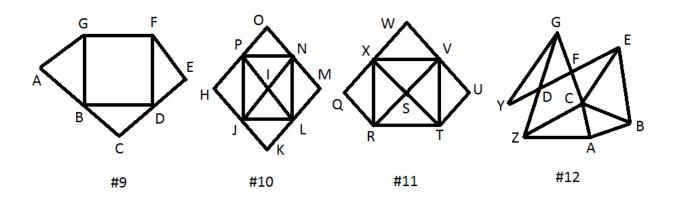
- 3. He had thirteen grandchildren and died while playing with a grandchild. He is said to have created mathematics with a baby on his __ap and children playing around him.
- 4. He contributed greatly to the foundations of every branch of advanced mathematics. One of his

famous equations is:
$$\underline{} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots$$

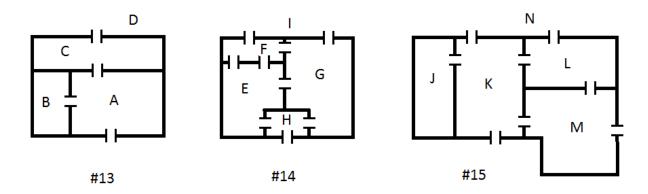
- 5. So numerous were his mathematical manuscripts that 200 volumes will be __equired to organize them into book form. He wrote 800 pages a year of high quality mathematics.

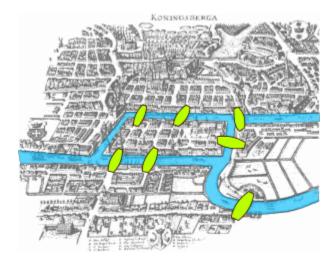


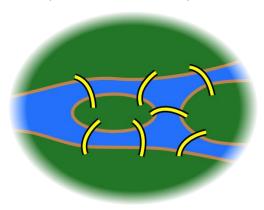

For each of the following diagrams, fill in the chart on the next page and

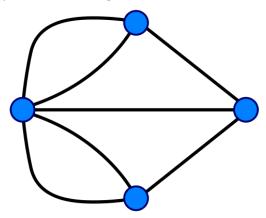

- (1) Tell how many odd and even vertices the figure has and
- (2) Determine whether you can draw each design without retracing a line or lifting the pencil.

 If the figure can be redrawn, give the starting and ending points.


Odd vertices are those points which have an odd number of lines / curve segments connecting to it. Even vertices are those points which have an even number of lines / curve segments connecting to it.


Can you go through each door in the following house plans exactly once? Consider each room as a vertex and the outside as one vertex.

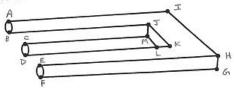

Figure #	Number of Even	Number of Odd	Can it Be Drawn?	
	Vertices	Vertices	Start? End?	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				


The number of even vertices has no bearing on whether a figure can be redrawn.

Now apply what you have learned to the Konigsberg Bridge Problem that Leonard Euler solved. Here is a map of Konigsberg, Prussia, which is now called Kaliningrad, Russia.

First, identify the two islands and the two main banks of the city and the river Pregel and the 7 bridges. Then replace each land mass by a vertex and each bridge by a line / curve segment.

This network is similar to the diagrams #1 - 12 above.


How many EVEN vertices does the figure have? _____

How many ODD vertices does the figure have" _____

Can it be redrawn? _____

If we think of the peculiar figure on the cover of Mad magazine as a network instead of solid, it will look like the figure below.

This	network	is simi	lar to t	he diagr	ams #1 –	12 above.
11113	HELWOIK	13 311111	ιαι το τ	ile ulagi	aiiis n 1	TZ above.

How many EVEN vertices does the figure have? _____

How many ODD vertices does the figure have" _____

Can it be redrawn? _____