There is a formula for determining the number of combinations of n items if you take r of them at a time.
${ }_{n} C_{r}=\frac{n!}{r!----------}$
If you are not familiar with the concept, let's take an example.
If there are 4 items called A, B, C, and D, and you want the number of combinations of any three of them, here are the possibilities:
$A B C$ ABD ACD BCD.
So the answer is that there are 4 combinations of 4 items taken 3 at a time. Here is the formula:

So, to find the number of possible combinations that Sonic could have for their 12 basic drinks and add-ins of up to 6 (out of 16 possibilities):

You must find the number of possible ways for each of the following:
No add-ins
1 add in
2 add ins
3 add ins
4 add ins
5 add ins
6 add ins
Then add them up.
No add-ins -- there are 12 basic drinks:
12
1 add in -- use ${ }_{16} \mathrm{C}_{1}$ to get 16, then multiply by 12 basic drinks to get 192
2 add ins -- use ${ }_{16} \mathrm{C}_{2}$ to get 120, then multiply by 12 basic drinks to get 1440
3 add ins -- use ${ }_{16} \mathrm{C}_{3}$ to get 560, then multiply by 12 basic drinks to get 6720
4 add ins -- use ${ }_{16} \mathrm{C}_{4}$ to get 1820, then multiply by 12 basic drinks to get 21840
5 add ins -- use ${ }_{16} \mathrm{C}_{5}$ to get 4368, then multiply by 12 basic drinks to get 52416
6 add ins -- use ${ }_{16} \mathrm{C}_{6}$ to get 8008, then multiply by 12 basic drinks to get 96096
Total number of combinations

